Yutong Guo , Hanzhang Zhou , Yixiang Wang , Yan Gu
{"title":"活化的骨髓中性粒细胞NETosis通过cGAS-STING/AKT2途径上调巨噬细胞破骨生成,促进骨质疏松。","authors":"Yutong Guo , Hanzhang Zhou , Yixiang Wang , Yan Gu","doi":"10.1016/j.yexcr.2025.114477","DOIUrl":null,"url":null,"abstract":"<div><div>Bone marrow (BM) of postmenopausal osteoporosis has been found highly inflammatory, resulting from dysregulated immune cells induced by both estrogen efficiency and body aging. NETosis of neutrophils has been found aberrantly activated in age-related chronic inflammation, while their role in postmenopausal osteoporosis remains unclear. Here we found NETosis of BM neutrophils of OVX (ovariectomy) mice was significantly activated, and we verified NETs released by neutrophils induced M1 polarization and osteoclastogenesis of RAW264.7 macrophages. Further, we demonstrated effects of NETs on osteoclastogenesis was mediated by cGAS-STING/AKT2 pathway. Finally, we found <em>in vivo</em> NETs-clearance through GSK484 significantly inhibited osteoclastogenesis and attenuated osteoporosis of OVX mice. Our study highlights the role of neutrophil NETosis in activating osteoclastogenesis and bone resorption of postmenopausal osteoporosis, thereby providing novel targets for bone loss treatment.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"446 2","pages":"Article 114477"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activated NETosis of bone marrow neutrophils up-regulates macrophage osteoclastogenesis via cGAS-STING/AKT2 pathway to promote osteoporosis\",\"authors\":\"Yutong Guo , Hanzhang Zhou , Yixiang Wang , Yan Gu\",\"doi\":\"10.1016/j.yexcr.2025.114477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bone marrow (BM) of postmenopausal osteoporosis has been found highly inflammatory, resulting from dysregulated immune cells induced by both estrogen efficiency and body aging. NETosis of neutrophils has been found aberrantly activated in age-related chronic inflammation, while their role in postmenopausal osteoporosis remains unclear. Here we found NETosis of BM neutrophils of OVX (ovariectomy) mice was significantly activated, and we verified NETs released by neutrophils induced M1 polarization and osteoclastogenesis of RAW264.7 macrophages. Further, we demonstrated effects of NETs on osteoclastogenesis was mediated by cGAS-STING/AKT2 pathway. Finally, we found <em>in vivo</em> NETs-clearance through GSK484 significantly inhibited osteoclastogenesis and attenuated osteoporosis of OVX mice. Our study highlights the role of neutrophil NETosis in activating osteoclastogenesis and bone resorption of postmenopausal osteoporosis, thereby providing novel targets for bone loss treatment.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"446 2\",\"pages\":\"Article 114477\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725000734\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725000734","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Activated NETosis of bone marrow neutrophils up-regulates macrophage osteoclastogenesis via cGAS-STING/AKT2 pathway to promote osteoporosis
Bone marrow (BM) of postmenopausal osteoporosis has been found highly inflammatory, resulting from dysregulated immune cells induced by both estrogen efficiency and body aging. NETosis of neutrophils has been found aberrantly activated in age-related chronic inflammation, while their role in postmenopausal osteoporosis remains unclear. Here we found NETosis of BM neutrophils of OVX (ovariectomy) mice was significantly activated, and we verified NETs released by neutrophils induced M1 polarization and osteoclastogenesis of RAW264.7 macrophages. Further, we demonstrated effects of NETs on osteoclastogenesis was mediated by cGAS-STING/AKT2 pathway. Finally, we found in vivo NETs-clearance through GSK484 significantly inhibited osteoclastogenesis and attenuated osteoporosis of OVX mice. Our study highlights the role of neutrophil NETosis in activating osteoclastogenesis and bone resorption of postmenopausal osteoporosis, thereby providing novel targets for bone loss treatment.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.