循环肿瘤DNA的纵向分析揭示了转移性前列腺癌在连续治疗期间的进化动力学。

IF 12.5 1区 医学 Q1 ONCOLOGY
Yuehui Zhao, Naveen Ramesh, Ping Xu, Emi Sei, Min Hu, Shanshan Bai, Patricia Troncoso, Ana M Aparicio, Christopher J Logothetis, Paul G Corn, Nicholas E Navin, Amado J Zurita
{"title":"循环肿瘤DNA的纵向分析揭示了转移性前列腺癌在连续治疗期间的进化动力学。","authors":"Yuehui Zhao, Naveen Ramesh, Ping Xu, Emi Sei, Min Hu, Shanshan Bai, Patricia Troncoso, Ana M Aparicio, Christopher J Logothetis, Paul G Corn, Nicholas E Navin, Amado J Zurita","doi":"10.1158/0008-5472.CAN-24-1943","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment decisions in metastatic castration-resistant prostate cancer are mostly guided by clinical variables, but efforts to molecularly monitor the disease remain hampered by challenges in acquiring tumor tissue repeatedly. In this study, we simultaneously profiled the genome copy number and exome in longitudinal plasma circulating tumor DNA (ctDNA) acquired before, during, and upon progression to serial treatments with androgen signaling inhibitors and taxane chemotherapy from 60 patients with metastatic castration-resistant prostate cancer (2-10 samples per patient). The genomic data were used to delineate the clonal substructure and evolutionary dynamics of each patient, and an evolutionary dynamic index was developed to measure the longitudinal changes of the tumor subclones. Treatment with androgen signaling inhibitors resulted in greater subclonal selection and population structure changes than taxane treatment. The subclones that emerged in association with serial therapy resistance harbored recurrent aberrations in previously identified and new candidate genes, with particular enrichment in genes related to PI3K-AKT signaling. These findings indicate that the integration of detailed clinical and genomic data can provide a framework for future unbiased genomic applications for ctDNA in the clinic to enable precision medicine. Significance: Profiling of the genomic copy number changes and mutations in circulating tumor DNA collected longitudinally from prostate cancer patients receiving serial life-prolonging therapies elucidates evolutionary dynamics and identifies emerging resistant subclones.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"1680-1695"},"PeriodicalIF":12.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048292/pdf/","citationCount":"0","resultStr":"{\"title\":\"Longitudinal Profiling of Circulating Tumor DNA Reveals the Evolutionary Dynamics of Metastatic Prostate Cancer during Serial Therapy.\",\"authors\":\"Yuehui Zhao, Naveen Ramesh, Ping Xu, Emi Sei, Min Hu, Shanshan Bai, Patricia Troncoso, Ana M Aparicio, Christopher J Logothetis, Paul G Corn, Nicholas E Navin, Amado J Zurita\",\"doi\":\"10.1158/0008-5472.CAN-24-1943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment decisions in metastatic castration-resistant prostate cancer are mostly guided by clinical variables, but efforts to molecularly monitor the disease remain hampered by challenges in acquiring tumor tissue repeatedly. In this study, we simultaneously profiled the genome copy number and exome in longitudinal plasma circulating tumor DNA (ctDNA) acquired before, during, and upon progression to serial treatments with androgen signaling inhibitors and taxane chemotherapy from 60 patients with metastatic castration-resistant prostate cancer (2-10 samples per patient). The genomic data were used to delineate the clonal substructure and evolutionary dynamics of each patient, and an evolutionary dynamic index was developed to measure the longitudinal changes of the tumor subclones. Treatment with androgen signaling inhibitors resulted in greater subclonal selection and population structure changes than taxane treatment. The subclones that emerged in association with serial therapy resistance harbored recurrent aberrations in previously identified and new candidate genes, with particular enrichment in genes related to PI3K-AKT signaling. These findings indicate that the integration of detailed clinical and genomic data can provide a framework for future unbiased genomic applications for ctDNA in the clinic to enable precision medicine. Significance: Profiling of the genomic copy number changes and mutations in circulating tumor DNA collected longitudinally from prostate cancer patients receiving serial life-prolonging therapies elucidates evolutionary dynamics and identifies emerging resistant subclones.</p>\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\" \",\"pages\":\"1680-1695\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.CAN-24-1943\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-1943","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转移性去势抵抗性前列腺癌(mCRPC)的治疗决策主要由临床变量指导,但分子监测疾病的努力仍然受到反复获得肿瘤组织的挑战的阻碍。在这里,我们同时分析了60例mCRPC患者(每位患者2-10个样本)在雄激素信号抑制剂(ASI)和紫杉醇化疗系列治疗之前、期间和之后获得的纵向血浆循环肿瘤DNA (ctDNA)的基因组拷贝数和外显子组。利用基因组数据描述每位患者的克隆亚结构和进化动态,并建立进化动态指数(EDI)来衡量肿瘤亚克隆的纵向变化。与紫杉烷处理相比,紫杉烷处理导致了更大的亚克隆选择和群体结构变化。出现的与系列治疗耐药相关的亚克隆在先前鉴定的和新的候选基因中具有复发性畸变,特别是在PI3K-AKT信号相关基因中富集。这些发现表明,详细的临床和基因组学数据的整合可以为临床ctDNA的无偏见基因组应用提供一个框架,从而实现精准医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal Profiling of Circulating Tumor DNA Reveals the Evolutionary Dynamics of Metastatic Prostate Cancer during Serial Therapy.

Treatment decisions in metastatic castration-resistant prostate cancer are mostly guided by clinical variables, but efforts to molecularly monitor the disease remain hampered by challenges in acquiring tumor tissue repeatedly. In this study, we simultaneously profiled the genome copy number and exome in longitudinal plasma circulating tumor DNA (ctDNA) acquired before, during, and upon progression to serial treatments with androgen signaling inhibitors and taxane chemotherapy from 60 patients with metastatic castration-resistant prostate cancer (2-10 samples per patient). The genomic data were used to delineate the clonal substructure and evolutionary dynamics of each patient, and an evolutionary dynamic index was developed to measure the longitudinal changes of the tumor subclones. Treatment with androgen signaling inhibitors resulted in greater subclonal selection and population structure changes than taxane treatment. The subclones that emerged in association with serial therapy resistance harbored recurrent aberrations in previously identified and new candidate genes, with particular enrichment in genes related to PI3K-AKT signaling. These findings indicate that the integration of detailed clinical and genomic data can provide a framework for future unbiased genomic applications for ctDNA in the clinic to enable precision medicine. Significance: Profiling of the genomic copy number changes and mutations in circulating tumor DNA collected longitudinally from prostate cancer patients receiving serial life-prolonging therapies elucidates evolutionary dynamics and identifies emerging resistant subclones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信