利用机器学习预测抗菌素类小分子的特异性。

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Yojana Gadiya, Olga Genilloud, Ursula Bilitewski, Mark Brönstrup, Leonie von Berlin, Marie Attwood, Philip Gribbon, Andrea Zaliani
{"title":"利用机器学习预测抗菌素类小分子的特异性。","authors":"Yojana Gadiya, Olga Genilloud, Ursula Bilitewski, Mark Brönstrup, Leonie von Berlin, Marie Attwood, Philip Gribbon, Andrea Zaliani","doi":"10.1021/acs.jcim.4c02347","DOIUrl":null,"url":null,"abstract":"<p><p>While the useful armory of antibiotic drugs is continually depleted due to the emergence of drug-resistant pathogens, the development of novel therapeutics has also slowed down. In the era of advanced computational methods, approaches like machine learning (ML) could be one potential solution to help reduce the high costs and complexity of antibiotic drug discovery and attract collaboration across organizations. In our work, we developed a large antimicrobial knowledge graph (AntiMicrobial-KG) as a repository for collecting and visualizing public <i>in vitro</i> antibacterial assay. Utilizing this data, we build ML models to efficiently scan compound libraries to identify compounds with the potential to exhibit antimicrobial activity. Our strategy involved training seven classic ML models across six compound fingerprint representations, of which the Random Forest trained on the MHFP6 fingerprint outperformed, demonstrating an accuracy of 75.9% and Cohen's Kappa score of 0.68. Finally, we illustrated the model's applicability for predicting the antimicrobial properties of two small molecule screening libraries. First, the EU-OpenScreen library was tested against a panel of Gram-positive, Gram-negative, and Fungal pathogens. Here, we unveiled that the model was able to correctly predict more than 30% of active compounds for Gram-positive, Gram-negative, and Fungal pathogens. Second, with the Enamine library, a commercially available HTS compound collection with claimed antibacterial properties, we predicted its antimicrobial activity and pathogen class specificity. These results may provide a means for accelerating research in AMR drug discovery efforts by carefully filtering out compounds from commercial libraries with lower chances of being active.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"2416-2431"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning.\",\"authors\":\"Yojana Gadiya, Olga Genilloud, Ursula Bilitewski, Mark Brönstrup, Leonie von Berlin, Marie Attwood, Philip Gribbon, Andrea Zaliani\",\"doi\":\"10.1021/acs.jcim.4c02347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While the useful armory of antibiotic drugs is continually depleted due to the emergence of drug-resistant pathogens, the development of novel therapeutics has also slowed down. In the era of advanced computational methods, approaches like machine learning (ML) could be one potential solution to help reduce the high costs and complexity of antibiotic drug discovery and attract collaboration across organizations. In our work, we developed a large antimicrobial knowledge graph (AntiMicrobial-KG) as a repository for collecting and visualizing public <i>in vitro</i> antibacterial assay. Utilizing this data, we build ML models to efficiently scan compound libraries to identify compounds with the potential to exhibit antimicrobial activity. Our strategy involved training seven classic ML models across six compound fingerprint representations, of which the Random Forest trained on the MHFP6 fingerprint outperformed, demonstrating an accuracy of 75.9% and Cohen's Kappa score of 0.68. Finally, we illustrated the model's applicability for predicting the antimicrobial properties of two small molecule screening libraries. First, the EU-OpenScreen library was tested against a panel of Gram-positive, Gram-negative, and Fungal pathogens. Here, we unveiled that the model was able to correctly predict more than 30% of active compounds for Gram-positive, Gram-negative, and Fungal pathogens. Second, with the Enamine library, a commercially available HTS compound collection with claimed antibacterial properties, we predicted its antimicrobial activity and pathogen class specificity. These results may provide a means for accelerating research in AMR drug discovery efforts by carefully filtering out compounds from commercial libraries with lower chances of being active.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"2416-2431\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02347\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02347","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

由于耐药病原体的出现,有用的抗生素药物不断枯竭,新疗法的发展也放缓了。在先进的计算方法时代,像机器学习(ML)这样的方法可能是一种潜在的解决方案,有助于降低抗生素药物发现的高成本和复杂性,并吸引跨组织的合作。在我们的工作中,我们开发了一个大型抗菌知识图谱(antimicrobial - kg),作为收集和可视化公共体外抗菌试验的存储库。利用这些数据,我们建立了ML模型来有效地扫描化合物库,以识别具有抗菌活性的化合物。我们的策略包括在6个复合指纹表示上训练7个经典ML模型,其中随机森林在MHFP6指纹上训练得更好,准确率为75.9%,Cohen’s Kappa得分为0.68。最后,我们说明了该模型在预测两个小分子筛选文库的抗菌特性方面的适用性。首先,对EU-OpenScreen文库进行革兰氏阳性、革兰氏阴性和真菌病原体的检测。在这里,我们揭示了该模型能够正确预测超过30%的革兰氏阳性、革兰氏阴性和真菌病原体的活性化合物。其次,利用Enamine文库(一种声称具有抗菌特性的市售HTS化合物集合),我们预测了其抗菌活性和病原体类别特异性。这些结果可能为加速AMR药物发现工作的研究提供了一种手段,通过仔细过滤掉商业文库中活性可能性较低的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning.

Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning.

Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning.

Predicting Antimicrobial Class Specificity of Small Molecules Using Machine Learning.

While the useful armory of antibiotic drugs is continually depleted due to the emergence of drug-resistant pathogens, the development of novel therapeutics has also slowed down. In the era of advanced computational methods, approaches like machine learning (ML) could be one potential solution to help reduce the high costs and complexity of antibiotic drug discovery and attract collaboration across organizations. In our work, we developed a large antimicrobial knowledge graph (AntiMicrobial-KG) as a repository for collecting and visualizing public in vitro antibacterial assay. Utilizing this data, we build ML models to efficiently scan compound libraries to identify compounds with the potential to exhibit antimicrobial activity. Our strategy involved training seven classic ML models across six compound fingerprint representations, of which the Random Forest trained on the MHFP6 fingerprint outperformed, demonstrating an accuracy of 75.9% and Cohen's Kappa score of 0.68. Finally, we illustrated the model's applicability for predicting the antimicrobial properties of two small molecule screening libraries. First, the EU-OpenScreen library was tested against a panel of Gram-positive, Gram-negative, and Fungal pathogens. Here, we unveiled that the model was able to correctly predict more than 30% of active compounds for Gram-positive, Gram-negative, and Fungal pathogens. Second, with the Enamine library, a commercially available HTS compound collection with claimed antibacterial properties, we predicted its antimicrobial activity and pathogen class specificity. These results may provide a means for accelerating research in AMR drug discovery efforts by carefully filtering out compounds from commercial libraries with lower chances of being active.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信