Micah Rambo, Isheka Agarwala, Camdyn Vanek, Yuxin Xiao, Emma Brown, K. L. Mills
{"title":"神经纤维蛋白缺乏的雪旺细胞对其生物力学微环境缺乏敏感性","authors":"Micah Rambo, Isheka Agarwala, Camdyn Vanek, Yuxin Xiao, Emma Brown, K. L. Mills","doi":"10.1002/gcc.70036","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Aims</h3>\n \n <p>Plexiform neurofibromas (PNFs) are benign tumors of the peripheral nervous system that affect approximately 30% of people with neurofibromatosis type 1 (NF1). Schwann cells (SCs), the tumor progenitor cells, respond to and use biomechanical signals like tissue stiffness and mechanical loads in their maintenance and repair functions in healthy tissues. PNFs are described as having altered biomechanics, and we hypothesize this plays a role in PNF development. As a first step in studying the role that altered biomechanics may play in the development of PNFs, we aimed to determine how PNF SCs alter in their response to various biomechanical signals as compared to healthy SCs.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We examined the behavior of healthy and PNF SCs in three different tissue-mimicking biomechanical models. First, we examined their spreading behavior on extracellular matrix (ECM) protein-coated polyacrylamide hydrogels of varying stiffness in the healthy and pathological range. Second, we investigated their collective migration with respect to substrate stiffness and ECM protein-coating. Finally, we generated multicellular spheroid tissue models using healthy and PNF SCs and measured their mechanical properties as a function of spheroid size.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that PNF SCs are differently sensitive to substrate stiffness in a physiological range compared to healthy SCs, lack sensitivity to ECM protein coating when collectively migrating, and lack sensitivity to environmental deficiencies in oxygen and nutrient supplies when in spheroid culture.</p>\n </section>\n \n <section>\n \n <h3> Interpretation</h3>\n \n <p>We propose that PNF SC altered biomechanics likely play a role in tumor initiation and progression, and that further biomechanical-based investigations of NF1 tumor growth are needed.</p>\n </section>\n </div>","PeriodicalId":12700,"journal":{"name":"Genes, Chromosomes & Cancer","volume":"64 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schwann Cells Deficient in Neurofibromin Lack Sensitivity to Their Biomechanical Microenvironment\",\"authors\":\"Micah Rambo, Isheka Agarwala, Camdyn Vanek, Yuxin Xiao, Emma Brown, K. L. Mills\",\"doi\":\"10.1002/gcc.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Aims</h3>\\n \\n <p>Plexiform neurofibromas (PNFs) are benign tumors of the peripheral nervous system that affect approximately 30% of people with neurofibromatosis type 1 (NF1). Schwann cells (SCs), the tumor progenitor cells, respond to and use biomechanical signals like tissue stiffness and mechanical loads in their maintenance and repair functions in healthy tissues. PNFs are described as having altered biomechanics, and we hypothesize this plays a role in PNF development. As a first step in studying the role that altered biomechanics may play in the development of PNFs, we aimed to determine how PNF SCs alter in their response to various biomechanical signals as compared to healthy SCs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We examined the behavior of healthy and PNF SCs in three different tissue-mimicking biomechanical models. First, we examined their spreading behavior on extracellular matrix (ECM) protein-coated polyacrylamide hydrogels of varying stiffness in the healthy and pathological range. Second, we investigated their collective migration with respect to substrate stiffness and ECM protein-coating. Finally, we generated multicellular spheroid tissue models using healthy and PNF SCs and measured their mechanical properties as a function of spheroid size.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We found that PNF SCs are differently sensitive to substrate stiffness in a physiological range compared to healthy SCs, lack sensitivity to ECM protein coating when collectively migrating, and lack sensitivity to environmental deficiencies in oxygen and nutrient supplies when in spheroid culture.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Interpretation</h3>\\n \\n <p>We propose that PNF SC altered biomechanics likely play a role in tumor initiation and progression, and that further biomechanical-based investigations of NF1 tumor growth are needed.</p>\\n </section>\\n </div>\",\"PeriodicalId\":12700,\"journal\":{\"name\":\"Genes, Chromosomes & Cancer\",\"volume\":\"64 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes, Chromosomes & Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gcc.70036\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes, Chromosomes & Cancer","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gcc.70036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Schwann Cells Deficient in Neurofibromin Lack Sensitivity to Their Biomechanical Microenvironment
Background and Aims
Plexiform neurofibromas (PNFs) are benign tumors of the peripheral nervous system that affect approximately 30% of people with neurofibromatosis type 1 (NF1). Schwann cells (SCs), the tumor progenitor cells, respond to and use biomechanical signals like tissue stiffness and mechanical loads in their maintenance and repair functions in healthy tissues. PNFs are described as having altered biomechanics, and we hypothesize this plays a role in PNF development. As a first step in studying the role that altered biomechanics may play in the development of PNFs, we aimed to determine how PNF SCs alter in their response to various biomechanical signals as compared to healthy SCs.
Methods
We examined the behavior of healthy and PNF SCs in three different tissue-mimicking biomechanical models. First, we examined their spreading behavior on extracellular matrix (ECM) protein-coated polyacrylamide hydrogels of varying stiffness in the healthy and pathological range. Second, we investigated their collective migration with respect to substrate stiffness and ECM protein-coating. Finally, we generated multicellular spheroid tissue models using healthy and PNF SCs and measured their mechanical properties as a function of spheroid size.
Results
We found that PNF SCs are differently sensitive to substrate stiffness in a physiological range compared to healthy SCs, lack sensitivity to ECM protein coating when collectively migrating, and lack sensitivity to environmental deficiencies in oxygen and nutrient supplies when in spheroid culture.
Interpretation
We propose that PNF SC altered biomechanics likely play a role in tumor initiation and progression, and that further biomechanical-based investigations of NF1 tumor growth are needed.
期刊介绍:
Genes, Chromosomes & Cancer will offer rapid publication of original full-length research articles, perspectives, reviews and letters to the editors on genetic analysis as related to the study of neoplasia. The main scope of the journal is to communicate new insights into the etiology and/or pathogenesis of neoplasia, as well as molecular and cellular findings of relevance for the management of cancer patients. While preference will be given to research utilizing analytical and functional approaches, descriptive studies and case reports will also be welcomed when they offer insights regarding basic biological mechanisms or the clinical management of neoplastic disorders.