边缘计算支持学生社区建设评估:一种基于TinyML的情感识别方法

IF 0.9 Q4 TELECOMMUNICATIONS
Shuo Liu
{"title":"边缘计算支持学生社区建设评估:一种基于TinyML的情感识别方法","authors":"Shuo Liu","doi":"10.1002/itl2.645","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Deep network-based video sentiment analysis is crucial for online evaluation tasks. However, these deep models are difficult to run on intelligent edge devices with limited computing resources. In addition, video data are susceptible to lighting interference, distortion, and background noise, which severely limits the performance of facial expression recognition. To relieve these issues, we develop an effective multi-scale semantic fusion tiny machine learning (TinyML) model based on a spatiotemporal graph convolutional network (ST-GCN) which enables robust expression recognition from facial landmark sequences. Specifically, we construct regional-connected graph data based on facial landmarks which are collected from cameras on different mobile devices. In existing spatiotemporal graph convolutional networks, we leverage the multi-scale semantic fusion mechanism to mine the hierarchical structure of facial landmarks. The experimental results on CK+ and online student community assessment sentiment analysis (OSCASA) dataset confirm that our approach yields comparable results.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge Computing Enables Assessment of Student Community Building: An Emotion Recognition Method Based on TinyML\",\"authors\":\"Shuo Liu\",\"doi\":\"10.1002/itl2.645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Deep network-based video sentiment analysis is crucial for online evaluation tasks. However, these deep models are difficult to run on intelligent edge devices with limited computing resources. In addition, video data are susceptible to lighting interference, distortion, and background noise, which severely limits the performance of facial expression recognition. To relieve these issues, we develop an effective multi-scale semantic fusion tiny machine learning (TinyML) model based on a spatiotemporal graph convolutional network (ST-GCN) which enables robust expression recognition from facial landmark sequences. Specifically, we construct regional-connected graph data based on facial landmarks which are collected from cameras on different mobile devices. In existing spatiotemporal graph convolutional networks, we leverage the multi-scale semantic fusion mechanism to mine the hierarchical structure of facial landmarks. The experimental results on CK+ and online student community assessment sentiment analysis (OSCASA) dataset confirm that our approach yields comparable results.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于深度网络的视频情感分析对于在线评价任务至关重要。然而,这些深度模型很难在计算资源有限的智能边缘设备上运行。此外,视频数据容易受到光线干扰、失真和背景噪声的影响,严重限制了面部表情识别的性能。为了解决这些问题,我们开发了一种有效的基于时空图卷积网络(ST-GCN)的多尺度语义融合微型机器学习(TinyML)模型,该模型能够从面部地标序列中实现鲁棒的表情识别。具体而言,我们基于从不同移动设备上的摄像头采集的面部地标构建区域连通图数据。在现有的时空图卷积网络中,我们利用多尺度语义融合机制来挖掘面部地标的层次结构。在CK+和在线学生社区评估情感分析(OSCASA)数据集上的实验结果证实了我们的方法产生了可比较的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Computing Enables Assessment of Student Community Building: An Emotion Recognition Method Based on TinyML

Deep network-based video sentiment analysis is crucial for online evaluation tasks. However, these deep models are difficult to run on intelligent edge devices with limited computing resources. In addition, video data are susceptible to lighting interference, distortion, and background noise, which severely limits the performance of facial expression recognition. To relieve these issues, we develop an effective multi-scale semantic fusion tiny machine learning (TinyML) model based on a spatiotemporal graph convolutional network (ST-GCN) which enables robust expression recognition from facial landmark sequences. Specifically, we construct regional-connected graph data based on facial landmarks which are collected from cameras on different mobile devices. In existing spatiotemporal graph convolutional networks, we leverage the multi-scale semantic fusion mechanism to mine the hierarchical structure of facial landmarks. The experimental results on CK+ and online student community assessment sentiment analysis (OSCASA) dataset confirm that our approach yields comparable results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信