\((\theta , \Theta )\) -循环码及其在构建qecc中的应用

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Awadhesh Kumar Shukla, Sachin Pathak, Om Prakash Pandey, Vipul Mishra, Ashish Kumar Upadhyay
{"title":"\\((\\theta , \\Theta )\\) -循环码及其在构建qecc中的应用","authors":"Awadhesh Kumar Shukla,&nbsp;Sachin Pathak,&nbsp;Om Prakash Pandey,&nbsp;Vipul Mishra,&nbsp;Ashish Kumar Upadhyay","doi":"10.1007/s11128-025-04684-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathbb {F}}_q\\)</span> be a finite field, where <i>q</i> is an odd prime power. Let <span>\\(R={\\mathbb {F}}_q+u{\\mathbb {F}}_q+v{\\mathbb {F}}_q+uv{\\mathbb {F}}_q\\)</span> with <span>\\(u^2=u,v^2=v,uv=vu\\)</span>. In this paper, we study the algebraic structure of <span>\\((\\theta , \\Theta )\\)</span>-cyclic codes of block length (<i>r</i>, <i>s</i>) over <span>\\({\\mathbb {F}}_qR.\\)</span> Specifically, we analyze the structure of these codes as left <span>\\(R[x:\\Theta ]\\)</span>-submodules of <span>\\({\\mathfrak {R}}_{r,s} = \\frac{{\\mathbb {F}}_q[x:\\theta ]}{\\langle x^r-1\\rangle } \\times \\frac{R[x:\\Theta ]}{\\langle x^s-1\\rangle }\\)</span>. Our investigation involves determining generator polynomials and minimal generating sets for this family of codes. Further, we discuss the algebraic structure of separable codes. A relationship between the generator polynomials of <span>\\((\\theta , \\Theta )\\)</span>-cyclic codes over <span>\\({\\mathbb {F}}_qR\\)</span> and their duals is established. Moreover, we calculate the generator polynomials of the dual of <span>\\((\\theta , \\Theta )\\)</span>-cyclic codes. As an application of our study, we provide a construction of quantum error-correcting codes (QECCs) from <span>\\((\\theta , \\Theta )\\)</span>-cyclic codes of block length (<i>r</i>, <i>s</i>) over <span>\\({\\mathbb {F}}_qR\\)</span>. We support our theoretical results with illustrative examples.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On \\\\((\\\\theta , \\\\Theta )\\\\)-cyclic codes and their applications in constructing QECCs\",\"authors\":\"Awadhesh Kumar Shukla,&nbsp;Sachin Pathak,&nbsp;Om Prakash Pandey,&nbsp;Vipul Mishra,&nbsp;Ashish Kumar Upadhyay\",\"doi\":\"10.1007/s11128-025-04684-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\mathbb {F}}_q\\\\)</span> be a finite field, where <i>q</i> is an odd prime power. Let <span>\\\\(R={\\\\mathbb {F}}_q+u{\\\\mathbb {F}}_q+v{\\\\mathbb {F}}_q+uv{\\\\mathbb {F}}_q\\\\)</span> with <span>\\\\(u^2=u,v^2=v,uv=vu\\\\)</span>. In this paper, we study the algebraic structure of <span>\\\\((\\\\theta , \\\\Theta )\\\\)</span>-cyclic codes of block length (<i>r</i>, <i>s</i>) over <span>\\\\({\\\\mathbb {F}}_qR.\\\\)</span> Specifically, we analyze the structure of these codes as left <span>\\\\(R[x:\\\\Theta ]\\\\)</span>-submodules of <span>\\\\({\\\\mathfrak {R}}_{r,s} = \\\\frac{{\\\\mathbb {F}}_q[x:\\\\theta ]}{\\\\langle x^r-1\\\\rangle } \\\\times \\\\frac{R[x:\\\\Theta ]}{\\\\langle x^s-1\\\\rangle }\\\\)</span>. Our investigation involves determining generator polynomials and minimal generating sets for this family of codes. Further, we discuss the algebraic structure of separable codes. A relationship between the generator polynomials of <span>\\\\((\\\\theta , \\\\Theta )\\\\)</span>-cyclic codes over <span>\\\\({\\\\mathbb {F}}_qR\\\\)</span> and their duals is established. Moreover, we calculate the generator polynomials of the dual of <span>\\\\((\\\\theta , \\\\Theta )\\\\)</span>-cyclic codes. As an application of our study, we provide a construction of quantum error-correcting codes (QECCs) from <span>\\\\((\\\\theta , \\\\Theta )\\\\)</span>-cyclic codes of block length (<i>r</i>, <i>s</i>) over <span>\\\\({\\\\mathbb {F}}_qR\\\\)</span>. We support our theoretical results with illustrative examples.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04684-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04684-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

设\({\mathbb {F}}_q\)是一个有限域,其中q是奇素数幂。让\(R={\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q+uv{\mathbb {F}}_q\)等于\(u^2=u,v^2=v,uv=vu\)。本文研究了\({\mathbb {F}}_qR.\)上块长(r, s)的\((\theta , \Theta )\) -循环码的代数结构,并分析了这些码作为\({\mathfrak {R}}_{r,s} = \frac{{\mathbb {F}}_q[x:\theta ]}{\langle x^r-1\rangle } \times \frac{R[x:\Theta ]}{\langle x^s-1\rangle }\)的左\(R[x:\Theta ]\) -子模块的结构。我们的研究涉及确定发电机多项式和最小发电机组的这一族的代码。进一步讨论了可分离码的代数结构。建立了\({\mathbb {F}}_qR\)上\((\theta , \Theta )\) -循环码的生成多项式与其对偶的关系。此外,我们还计算了\((\theta , \Theta )\) -循环码对偶的生成多项式。作为我们研究的一个应用,我们提供了一个量子纠错码(QECCs)的结构从\((\theta , \Theta )\) -块长度(r, s)在\({\mathbb {F}}_qR\)上的循环码。我们用实例来支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On \((\theta , \Theta )\)-cyclic codes and their applications in constructing QECCs

Let \({\mathbb {F}}_q\) be a finite field, where q is an odd prime power. Let \(R={\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q+uv{\mathbb {F}}_q\) with \(u^2=u,v^2=v,uv=vu\). In this paper, we study the algebraic structure of \((\theta , \Theta )\)-cyclic codes of block length (rs) over \({\mathbb {F}}_qR.\) Specifically, we analyze the structure of these codes as left \(R[x:\Theta ]\)-submodules of \({\mathfrak {R}}_{r,s} = \frac{{\mathbb {F}}_q[x:\theta ]}{\langle x^r-1\rangle } \times \frac{R[x:\Theta ]}{\langle x^s-1\rangle }\). Our investigation involves determining generator polynomials and minimal generating sets for this family of codes. Further, we discuss the algebraic structure of separable codes. A relationship between the generator polynomials of \((\theta , \Theta )\)-cyclic codes over \({\mathbb {F}}_qR\) and their duals is established. Moreover, we calculate the generator polynomials of the dual of \((\theta , \Theta )\)-cyclic codes. As an application of our study, we provide a construction of quantum error-correcting codes (QECCs) from \((\theta , \Theta )\)-cyclic codes of block length (rs) over \({\mathbb {F}}_qR\). We support our theoretical results with illustrative examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信