Sortilin和l型钙通道可能参与了proBDNF信号在小鼠神经肌肉连接再生中的异常机制

IF 3.8 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
P. O. Bogacheva, D. A. Potapova, A. E. Gaydukov
{"title":"Sortilin和l型钙通道可能参与了proBDNF信号在小鼠神经肌肉连接再生中的异常机制","authors":"P. O. Bogacheva,&nbsp;D. A. Potapova,&nbsp;A. E. Gaydukov","doi":"10.1007/s11064-025-04360-8","DOIUrl":null,"url":null,"abstract":"<div><p>proBDNF and its main proteolytic product BDNF play crucial roles in maturation of neuromuscular junctions during development or reinnervation. We investigated the mechanisms of acute proBDNF effects on synaptic transmission in mouse motor synapses regenerating after nerve crush. The cleavage-resistant proBDNF mimicked the previously shown effect of cleavable proBDNF– GIRK-mediated decrease in the miniature endplate potential (MEPP) frequency accompanied by slight hyperpolarization of postsynaptic membrane. Remarkably, this effect did not utilize canonical proBDNF signaling pathway since inhibition of either p75 receptors with LM11A-31 or sortilin with AF38469 was not able to prevent it. Without sortilin activity, proBDNF downregulated the quantal content of multiquantal endplate potentials (EPP). This non-canonical action of proneurotrophin via TrkB receptors highlights the important role of sortilin as a safeguard preventing the spread of the negative effect of proBDNF on the evoked neurotransmitter release in regenerating motor synapses. In the absence of sortilin activity L-type calcium channels emerged as the key players providing proBDNF-induced decrease of EPP quantal content, while they were not involved in proBDNF-induced decrease of MEPP frequency. Sortilin-independent but TrkB- and GIRK-mediated inhibition of spontaneous release by proBDNF was not associated with the activity of acetylcholine (M2) or purinergic (A1 and P2Y13) metabotropic receptors. We propose that depending on sortilin involvement, proBDNF selectively affects spontaneous or evoked quantal neurotransmitter release via different branches of signaling pathway that ensure the presynaptic activation of GIRK or L-type calcium channels, respectively.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sortilin and L-type Calcium Channels May be Involved in the Unusual Mechanism of proBDNF Signaling in Regenerating Mouse Neuromuscular Junctions\",\"authors\":\"P. O. Bogacheva,&nbsp;D. A. Potapova,&nbsp;A. E. Gaydukov\",\"doi\":\"10.1007/s11064-025-04360-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>proBDNF and its main proteolytic product BDNF play crucial roles in maturation of neuromuscular junctions during development or reinnervation. We investigated the mechanisms of acute proBDNF effects on synaptic transmission in mouse motor synapses regenerating after nerve crush. The cleavage-resistant proBDNF mimicked the previously shown effect of cleavable proBDNF– GIRK-mediated decrease in the miniature endplate potential (MEPP) frequency accompanied by slight hyperpolarization of postsynaptic membrane. Remarkably, this effect did not utilize canonical proBDNF signaling pathway since inhibition of either p75 receptors with LM11A-31 or sortilin with AF38469 was not able to prevent it. Without sortilin activity, proBDNF downregulated the quantal content of multiquantal endplate potentials (EPP). This non-canonical action of proneurotrophin via TrkB receptors highlights the important role of sortilin as a safeguard preventing the spread of the negative effect of proBDNF on the evoked neurotransmitter release in regenerating motor synapses. In the absence of sortilin activity L-type calcium channels emerged as the key players providing proBDNF-induced decrease of EPP quantal content, while they were not involved in proBDNF-induced decrease of MEPP frequency. Sortilin-independent but TrkB- and GIRK-mediated inhibition of spontaneous release by proBDNF was not associated with the activity of acetylcholine (M2) or purinergic (A1 and P2Y13) metabotropic receptors. We propose that depending on sortilin involvement, proBDNF selectively affects spontaneous or evoked quantal neurotransmitter release via different branches of signaling pathway that ensure the presynaptic activation of GIRK or L-type calcium channels, respectively.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-025-04360-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04360-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

proBDNF及其主要蛋白水解产物BDNF在神经发育或神经再生过程中对神经肌肉连接的成熟起着至关重要的作用。我们研究了急性proBDNF对小鼠神经挤压后运动突触再生突触传递的影响机制。抗劈裂proBDNF模拟了先前显示的可劈裂proBDNF - girk介导的微型终板电位(MEPP)频率降低伴随突触后膜轻度超极化的效应。值得注意的是,这种效应没有利用典型的proBDNF信号通路,因为LM11A-31抑制p75受体或AF38469抑制sortilin都不能阻止它。在没有sortilin活性的情况下,proBDNF下调了多量子终板电位(EPP)的量子含量。嗜前粒细胞通过TrkB受体的非规范作用突出了sortilin的重要作用,它可以防止proBDNF对再生运动突触中诱发的神经递质释放的负面影响扩散。在sortilin活性缺失的情况下,l型钙通道是probdnf诱导EPP量子含量降低的关键参与者,而与probdnf诱导的MEPP频率降低无关。TrkB和girk介导的proBDNF自发释放抑制与乙酰胆碱(M2)或嘌呤能(A1和P2Y13)代谢受体的活性无关。我们提出,根据sortilin的参与,proBDNF通过信号通路的不同分支选择性地影响自发或诱发的量子神经递质释放,分别确保突触前激活GIRK或l型钙通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sortilin and L-type Calcium Channels May be Involved in the Unusual Mechanism of proBDNF Signaling in Regenerating Mouse Neuromuscular Junctions

Sortilin and L-type Calcium Channels May be Involved in the Unusual Mechanism of proBDNF Signaling in Regenerating Mouse Neuromuscular Junctions

proBDNF and its main proteolytic product BDNF play crucial roles in maturation of neuromuscular junctions during development or reinnervation. We investigated the mechanisms of acute proBDNF effects on synaptic transmission in mouse motor synapses regenerating after nerve crush. The cleavage-resistant proBDNF mimicked the previously shown effect of cleavable proBDNF– GIRK-mediated decrease in the miniature endplate potential (MEPP) frequency accompanied by slight hyperpolarization of postsynaptic membrane. Remarkably, this effect did not utilize canonical proBDNF signaling pathway since inhibition of either p75 receptors with LM11A-31 or sortilin with AF38469 was not able to prevent it. Without sortilin activity, proBDNF downregulated the quantal content of multiquantal endplate potentials (EPP). This non-canonical action of proneurotrophin via TrkB receptors highlights the important role of sortilin as a safeguard preventing the spread of the negative effect of proBDNF on the evoked neurotransmitter release in regenerating motor synapses. In the absence of sortilin activity L-type calcium channels emerged as the key players providing proBDNF-induced decrease of EPP quantal content, while they were not involved in proBDNF-induced decrease of MEPP frequency. Sortilin-independent but TrkB- and GIRK-mediated inhibition of spontaneous release by proBDNF was not associated with the activity of acetylcholine (M2) or purinergic (A1 and P2Y13) metabotropic receptors. We propose that depending on sortilin involvement, proBDNF selectively affects spontaneous or evoked quantal neurotransmitter release via different branches of signaling pathway that ensure the presynaptic activation of GIRK or L-type calcium channels, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信