Teng Limin, Shuntaro Hatori, Shunsuke Fukushi, Xing Yi, Kota Chiba, Yoritaka Akimoto, Takashi Yamaguchi, Yuta Nishiyama, Shusaku Nomura, E. A. Chayani Dilrukshi
{"title":"评估行走过程中脑电波的初步研究:用软动态时间扭曲消除伪影","authors":"Teng Limin, Shuntaro Hatori, Shunsuke Fukushi, Xing Yi, Kota Chiba, Yoritaka Akimoto, Takashi Yamaguchi, Yuta Nishiyama, Shusaku Nomura, E. A. Chayani Dilrukshi","doi":"10.1007/s10015-024-00981-4","DOIUrl":null,"url":null,"abstract":"<div><p>Existing electroencephalography (EEG) studies predominantly involve participants in stationary positions, which presents challenges in accurately capturing EEG data during physical activities due to motion-induced noise and artifacts. This study aims to assess and validate the efficacy of the Soft Dynamic Time Warping (Soft-DTW) clustering method for analyzing EEG data collected during physical activity, focusing on an oddball auditory task performed while walking. Employing a mobile active bio-amplifier, the study captures brain activity and assesses auditory event-related potentials (ERPs) under dynamic conditions. The comparative performance of five clustering techniques, k-shape, kernels, k-means, Dynamic Time Warping, and Soft-DTW, in terms of their effectiveness in artifact reduction, was analyzed. Results indicated a significant difference between target and non-target auditory stimuli, with the target stimuli exhibiting a positive (positive) potential, although of smaller magnitude. This outcome suggests that, despite significant artifact interference from walking, Soft-DTW facilitates extracting differences in cognitive processes for the oddball task from the EEG data.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 1","pages":"136 - 142"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A preliminary study to assess the brain waves during walking: artifact elimination using soft dynamic time warping\",\"authors\":\"Teng Limin, Shuntaro Hatori, Shunsuke Fukushi, Xing Yi, Kota Chiba, Yoritaka Akimoto, Takashi Yamaguchi, Yuta Nishiyama, Shusaku Nomura, E. A. Chayani Dilrukshi\",\"doi\":\"10.1007/s10015-024-00981-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Existing electroencephalography (EEG) studies predominantly involve participants in stationary positions, which presents challenges in accurately capturing EEG data during physical activities due to motion-induced noise and artifacts. This study aims to assess and validate the efficacy of the Soft Dynamic Time Warping (Soft-DTW) clustering method for analyzing EEG data collected during physical activity, focusing on an oddball auditory task performed while walking. Employing a mobile active bio-amplifier, the study captures brain activity and assesses auditory event-related potentials (ERPs) under dynamic conditions. The comparative performance of five clustering techniques, k-shape, kernels, k-means, Dynamic Time Warping, and Soft-DTW, in terms of their effectiveness in artifact reduction, was analyzed. Results indicated a significant difference between target and non-target auditory stimuli, with the target stimuli exhibiting a positive (positive) potential, although of smaller magnitude. This outcome suggests that, despite significant artifact interference from walking, Soft-DTW facilitates extracting differences in cognitive processes for the oddball task from the EEG data.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":\"30 1\",\"pages\":\"136 - 142\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-024-00981-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00981-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
摘要
现有的脑电图(EEG)研究主要涉及静止位置的参与者,由于运动引起的噪声和伪影,这给准确捕获身体活动期间的EEG数据带来了挑战。本研究旨在评估和验证软动态时间扭曲(Soft- Dynamic Time Warping, Soft- dtw)聚类方法在分析身体活动时收集的脑电数据的有效性,并以行走时执行的古怪听觉任务为研究对象。该研究采用移动有源生物放大器,在动态条件下捕捉大脑活动并评估听觉事件相关电位(erp)。对比分析了k-shape、kernel、k-means、Dynamic Time Warping和Soft-DTW五种聚类技术在减少伪影方面的效果。结果表明,目标和非目标听觉刺激之间存在显著差异,目标刺激表现出正(正)电位,尽管量级较小。这一结果表明,尽管行走产生了明显的伪影干扰,但软dtw有助于从脑电图数据中提取古怪任务的认知过程差异。
A preliminary study to assess the brain waves during walking: artifact elimination using soft dynamic time warping
Existing electroencephalography (EEG) studies predominantly involve participants in stationary positions, which presents challenges in accurately capturing EEG data during physical activities due to motion-induced noise and artifacts. This study aims to assess and validate the efficacy of the Soft Dynamic Time Warping (Soft-DTW) clustering method for analyzing EEG data collected during physical activity, focusing on an oddball auditory task performed while walking. Employing a mobile active bio-amplifier, the study captures brain activity and assesses auditory event-related potentials (ERPs) under dynamic conditions. The comparative performance of five clustering techniques, k-shape, kernels, k-means, Dynamic Time Warping, and Soft-DTW, in terms of their effectiveness in artifact reduction, was analyzed. Results indicated a significant difference between target and non-target auditory stimuli, with the target stimuli exhibiting a positive (positive) potential, although of smaller magnitude. This outcome suggests that, despite significant artifact interference from walking, Soft-DTW facilitates extracting differences in cognitive processes for the oddball task from the EEG data.