{"title":"面向人工智能增强的工艺规划:基于零件设计的机床能力评估","authors":"Sepideh Abolghasem , Matthew Youssef , Faruk Abedrabbo , Amman Pandde","doi":"10.1016/j.procs.2025.01.122","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of the fourth industrial revolution, or Industry 4.0, necessitates a more automated approach to manufacturing process planning. This process begins with evaluating machine tool capabilities to handle specific part geometries and microstructures. Once a match is established, the focus shifts to developing an efficient method for converting design elements into physical components. This work aims to create and validate a framework that assesses the manufacturability of design features based on the available machinery and materials. Specifically, it involves classifying manufacturing processes, such as turning and milling, for a given part design geometry. To achieve this, feature attributes like rotational symmetry and D2 distribution are calculated for a dataset used to train a decision tree. This model then suggests the appropriate manufacturing process for a given CAD model. The decision tree is validated with a separate dataset, showing reasonable accuracy. Ultimately, the goal is to enhance process planning, ensuring the seamless translation of designs into physical products, with a particular emphasis on geometry, microstructure, and cost.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"253 ","pages":"Pages 603-611"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards AI-enhanced process planning: assessing machine tool capability based on part design\",\"authors\":\"Sepideh Abolghasem , Matthew Youssef , Faruk Abedrabbo , Amman Pandde\",\"doi\":\"10.1016/j.procs.2025.01.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The emergence of the fourth industrial revolution, or Industry 4.0, necessitates a more automated approach to manufacturing process planning. This process begins with evaluating machine tool capabilities to handle specific part geometries and microstructures. Once a match is established, the focus shifts to developing an efficient method for converting design elements into physical components. This work aims to create and validate a framework that assesses the manufacturability of design features based on the available machinery and materials. Specifically, it involves classifying manufacturing processes, such as turning and milling, for a given part design geometry. To achieve this, feature attributes like rotational symmetry and D2 distribution are calculated for a dataset used to train a decision tree. This model then suggests the appropriate manufacturing process for a given CAD model. The decision tree is validated with a separate dataset, showing reasonable accuracy. Ultimately, the goal is to enhance process planning, ensuring the seamless translation of designs into physical products, with a particular emphasis on geometry, microstructure, and cost.</div></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"253 \",\"pages\":\"Pages 603-611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050925001309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925001309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards AI-enhanced process planning: assessing machine tool capability based on part design
The emergence of the fourth industrial revolution, or Industry 4.0, necessitates a more automated approach to manufacturing process planning. This process begins with evaluating machine tool capabilities to handle specific part geometries and microstructures. Once a match is established, the focus shifts to developing an efficient method for converting design elements into physical components. This work aims to create and validate a framework that assesses the manufacturability of design features based on the available machinery and materials. Specifically, it involves classifying manufacturing processes, such as turning and milling, for a given part design geometry. To achieve this, feature attributes like rotational symmetry and D2 distribution are calculated for a dataset used to train a decision tree. This model then suggests the appropriate manufacturing process for a given CAD model. The decision tree is validated with a separate dataset, showing reasonable accuracy. Ultimately, the goal is to enhance process planning, ensuring the seamless translation of designs into physical products, with a particular emphasis on geometry, microstructure, and cost.