通过分子模拟研究聚酯脱晶的分子细节

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Daria Lazarenko, Graham P. Schmidt, Michael F. Crowley, Gregg T. Beckham and Brandon C. Knott*, 
{"title":"通过分子模拟研究聚酯脱晶的分子细节","authors":"Daria Lazarenko,&nbsp;Graham P. Schmidt,&nbsp;Michael F. Crowley,&nbsp;Gregg T. Beckham and Brandon C. Knott*,&nbsp;","doi":"10.1021/acs.macromol.4c0213010.1021/acs.macromol.4c02130","DOIUrl":null,"url":null,"abstract":"<p >Waste polyesters are a potential feedstock for recycled and upcycled products. These polymers are generally semicrystalline, which presents a challenge for chemical and biological recycling to monomers, and thus the thermodynamic work associated with polyester decrystallization is an important consideration in some depolymerization strategies. Here, we use molecular dynamics simulations to calculate the free energy required to decrystallize a single chain from the crystal surface of five commercially and scientifically important, semiaromatic polyesters (PET, PTT, PBT, PEN, and PEF) in water. Our results indicate the decrystallization work ranges from approximately 15 kcal/mol (PEN) to 8 kcal/mol (PEF) per repeat unit for chains in the middle of a crystal surface. The insight gained into the molecular interactions that form the structural basis of semicrystalline synthetic polyesters can guide the pursuit of more efficient plastic processing, which could include catalyst development, optimizing recycling conditions including pretreatment, enzyme and solvent selections, and design of new materials.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 4","pages":"1795–1803 1795–1803"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c02130","citationCount":"0","resultStr":"{\"title\":\"Molecular Details of Polyester Decrystallization via Molecular Simulation\",\"authors\":\"Daria Lazarenko,&nbsp;Graham P. Schmidt,&nbsp;Michael F. Crowley,&nbsp;Gregg T. Beckham and Brandon C. Knott*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.4c0213010.1021/acs.macromol.4c02130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Waste polyesters are a potential feedstock for recycled and upcycled products. These polymers are generally semicrystalline, which presents a challenge for chemical and biological recycling to monomers, and thus the thermodynamic work associated with polyester decrystallization is an important consideration in some depolymerization strategies. Here, we use molecular dynamics simulations to calculate the free energy required to decrystallize a single chain from the crystal surface of five commercially and scientifically important, semiaromatic polyesters (PET, PTT, PBT, PEN, and PEF) in water. Our results indicate the decrystallization work ranges from approximately 15 kcal/mol (PEN) to 8 kcal/mol (PEF) per repeat unit for chains in the middle of a crystal surface. The insight gained into the molecular interactions that form the structural basis of semicrystalline synthetic polyesters can guide the pursuit of more efficient plastic processing, which could include catalyst development, optimizing recycling conditions including pretreatment, enzyme and solvent selections, and design of new materials.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 4\",\"pages\":\"1795–1803 1795–1803\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c02130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02130\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02130","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

废聚酯是回收和升级利用产品的潜在原料。这些聚合物通常是半结晶的,这对单体的化学和生物回收提出了挑战,因此与聚酯脱晶相关的热力学工作是一些解聚策略的重要考虑因素。在这里,我们使用分子动力学模拟来计算五种具有商业和科学意义的半芳香聚酯(PET, PTT, PBT, PEN和PEF)在水中从晶体表面脱晶单链所需的自由能。我们的结果表明,晶体表面中间链的脱晶功在每个重复单元大约15到8千卡/摩尔(PEF)之间。对形成半晶合成聚酯结构基础的分子相互作用的洞察可以指导追求更高效的塑料加工,包括催化剂开发,优化回收条件,包括预处理,酶和溶剂的选择,以及新材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Details of Polyester Decrystallization via Molecular Simulation

Waste polyesters are a potential feedstock for recycled and upcycled products. These polymers are generally semicrystalline, which presents a challenge for chemical and biological recycling to monomers, and thus the thermodynamic work associated with polyester decrystallization is an important consideration in some depolymerization strategies. Here, we use molecular dynamics simulations to calculate the free energy required to decrystallize a single chain from the crystal surface of five commercially and scientifically important, semiaromatic polyesters (PET, PTT, PBT, PEN, and PEF) in water. Our results indicate the decrystallization work ranges from approximately 15 kcal/mol (PEN) to 8 kcal/mol (PEF) per repeat unit for chains in the middle of a crystal surface. The insight gained into the molecular interactions that form the structural basis of semicrystalline synthetic polyesters can guide the pursuit of more efficient plastic processing, which could include catalyst development, optimizing recycling conditions including pretreatment, enzyme and solvent selections, and design of new materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信