负焓提高mg2sn基热电发电机的热稳定性

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinzhi Wu , Caichao Ye , Yupeng Wang , Zilong Liao , Wenqing Zhang , Weishu Liu
{"title":"负焓提高mg2sn基热电发电机的热稳定性","authors":"Xinzhi Wu ,&nbsp;Caichao Ye ,&nbsp;Yupeng Wang ,&nbsp;Zilong Liao ,&nbsp;Wenqing Zhang ,&nbsp;Weishu Liu","doi":"10.1016/j.actamat.2025.120865","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal stability is crucial for the thermoelectric power generation device, but it has not yet gotten enough attention. Herein, we propose the negative enthalpy strategy to improve thermal stability with the assistance of first-principal calculation. It was found that the doping of element Y at the Mg sublattice significantly reduces the mixing enthalpy of Mg<sub>2</sub>Sn from -8.0 kJ mol<sup>−1</sup> (Mg<sub>2</sub>Sn) to -13.8 kJ mol<sup>−1</sup> (Mg<sub>1.75</sub>Y<sub>0.25</sub>Sn). Y increases the formation energy of Mg vacancy in Mg<sub>2-x</sub>Y<sub>x</sub>Sn, strengthens the Mg-Sn chemical bond, refines grain size, and reduces saturation vapor pressure. Experimentally, the Y-doped sample Mg<sub>2.05</sub>Y<sub>0.01</sub>Sn<sub>0.728</sub>Ge<sub>0.25</sub>Sb<sub>0.022</sub> shows a modulus of 97 GPa, hardness of 4.6 GPa, <em>σ</em><sub>s</sub> of 19 MPa, corresponding to a 9%, 3%, and 28% higher than that of the Y-free sample, respectively. In-situ electrical properties measurement confirms the excellent thermal stability of the Y-doped sample Mg<sub>2. 05</sub>Y<sub>0.01</sub>Sn<sub>0.728</sub>Ge<sub>0.25</sub>Sb<sub>0.022</sub> at 500 °C for over 3000 min. Ultimately, a high specific power density of 0.9 W cm<sup>−</sup><sup>1</sup> and conversion efficiency of 7.3% were achieved in the corresponding single-leg device under a temperature difference of 370 °C, representing significant advancements in the Mg<sub>2</sub>Sn-based thermoelectric devices.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120865"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative enthalpy delivering improved thermal stability for Mg2Sn-based thermoelectric power generator\",\"authors\":\"Xinzhi Wu ,&nbsp;Caichao Ye ,&nbsp;Yupeng Wang ,&nbsp;Zilong Liao ,&nbsp;Wenqing Zhang ,&nbsp;Weishu Liu\",\"doi\":\"10.1016/j.actamat.2025.120865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal stability is crucial for the thermoelectric power generation device, but it has not yet gotten enough attention. Herein, we propose the negative enthalpy strategy to improve thermal stability with the assistance of first-principal calculation. It was found that the doping of element Y at the Mg sublattice significantly reduces the mixing enthalpy of Mg<sub>2</sub>Sn from -8.0 kJ mol<sup>−1</sup> (Mg<sub>2</sub>Sn) to -13.8 kJ mol<sup>−1</sup> (Mg<sub>1.75</sub>Y<sub>0.25</sub>Sn). Y increases the formation energy of Mg vacancy in Mg<sub>2-x</sub>Y<sub>x</sub>Sn, strengthens the Mg-Sn chemical bond, refines grain size, and reduces saturation vapor pressure. Experimentally, the Y-doped sample Mg<sub>2.05</sub>Y<sub>0.01</sub>Sn<sub>0.728</sub>Ge<sub>0.25</sub>Sb<sub>0.022</sub> shows a modulus of 97 GPa, hardness of 4.6 GPa, <em>σ</em><sub>s</sub> of 19 MPa, corresponding to a 9%, 3%, and 28% higher than that of the Y-free sample, respectively. In-situ electrical properties measurement confirms the excellent thermal stability of the Y-doped sample Mg<sub>2. 05</sub>Y<sub>0.01</sub>Sn<sub>0.728</sub>Ge<sub>0.25</sub>Sb<sub>0.022</sub> at 500 °C for over 3000 min. Ultimately, a high specific power density of 0.9 W cm<sup>−</sup><sup>1</sup> and conversion efficiency of 7.3% were achieved in the corresponding single-leg device under a temperature difference of 370 °C, representing significant advancements in the Mg<sub>2</sub>Sn-based thermoelectric devices.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"289 \",\"pages\":\"Article 120865\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425001570\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425001570","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热稳定性对热电发电装置至关重要,但目前尚未引起足够的重视。在此,我们提出了负焓策略,以提高热稳定性的辅助第一主计算。结果表明,在Mg亚晶格处掺杂Y元素可使Mg2Sn的混合焓从-8.0 kJ mol−1 (Mg2Sn)显著降低至-13.8 kJ mol−1 (Mg1.75Y0.25Sn)。Y增加了Mg2-xYxSn中Mg空位的形成能,强化了Mg- sn的化学键,细化了晶粒尺寸,降低了饱和蒸汽压。实验结果表明,掺y样品Mg2.05Y0.01Sn0.728Ge0.25Sb0.022的模量为97 GPa,硬度为4.6 GPa, σs为19 MPa,分别比未掺y样品高9%、3%和28%。原位电学性能测试证实了掺y样品Mg2具有优异的热稳定性。最终,在370°C的温差下,在相应的单腿器件中实现了1.8 W cm−2的高功率密度和7.3%的转换效率,代表了mg2sn基热电器件的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Negative enthalpy delivering improved thermal stability for Mg2Sn-based thermoelectric power generator

Negative enthalpy delivering improved thermal stability for Mg2Sn-based thermoelectric power generator

Negative enthalpy delivering improved thermal stability for Mg2Sn-based thermoelectric power generator
Thermal stability is crucial for the thermoelectric power generation device, but it has not yet gotten enough attention. Herein, we propose the negative enthalpy strategy to improve thermal stability with the assistance of first-principal calculation. It was found that the doping of element Y at the Mg sublattice significantly reduces the mixing enthalpy of Mg2Sn from -8.0 kJ mol−1 (Mg2Sn) to -13.8 kJ mol−1 (Mg1.75Y0.25Sn). Y increases the formation energy of Mg vacancy in Mg2-xYxSn, strengthens the Mg-Sn chemical bond, refines grain size, and reduces saturation vapor pressure. Experimentally, the Y-doped sample Mg2.05Y0.01Sn0.728Ge0.25Sb0.022 shows a modulus of 97 GPa, hardness of 4.6 GPa, σs of 19 MPa, corresponding to a 9%, 3%, and 28% higher than that of the Y-free sample, respectively. In-situ electrical properties measurement confirms the excellent thermal stability of the Y-doped sample Mg2. 05Y0.01Sn0.728Ge0.25Sb0.022 at 500 °C for over 3000 min. Ultimately, a high specific power density of 0.9 W cm1 and conversion efficiency of 7.3% were achieved in the corresponding single-leg device under a temperature difference of 370 °C, representing significant advancements in the Mg2Sn-based thermoelectric devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信