Haodong Sun, Yuxin Xiao, Yunfei He, Xiaoyu Wei, Jindou Zou, Yuanda Luo, Yazhang Wu, Jiaxin Zhao, Vonika Ka-Man Au and Tao Yu
{"title":"3D可打印有机室温磷光材料及打印实时传感和显示装置","authors":"Haodong Sun, Yuxin Xiao, Yunfei He, Xiaoyu Wei, Jindou Zou, Yuanda Luo, Yazhang Wu, Jiaxin Zhao, Vonika Ka-Man Au and Tao Yu","doi":"10.1039/D5SC00316D","DOIUrl":null,"url":null,"abstract":"<p >Polymer-based host–guest organic room-temperature phosphorescent (RTP) materials are promising candidates for new flexible electronic devices. Nowadays, the insufficient fabrication processes of polymeric RTP materials have hindered the development of these materials. Herein, we propose a strategy to realize 3D printable organic RTP materials and have successfully demonstrated real-time sensing and display devices through a Digital Light Processing (DLP) 3D printing process. We have designed and synthesized the molecules EtCzBP, PhCzBP and PhCzPM with A–D–A structures. The crucial role of strong intramolecular charge transfer (ICT) at the lowest triplet states in achieving bright photo-activated phosphorescence in polymer matrices has also been demonstrated. 3D printable RTP resins were manufactured by doping emissive guest molecules into methyl methacrylate (MMA). Based on these resins, a series of complex 3D structures and smart temperature responsive RTP performances were obtained by DLP 3D printing. Additionally, these RTP 3D structures have been applied in real-time temperature sensing and display panels for the first time. This work not only provides a guiding strategy for the design of emissive guest molecules to realize photo-activated RTP in poly(methyl methacrylate) (PMMA), but also paves the way for the development of 3D-printable real-time sensing structures and new-concept display devices.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 12","pages":" 5299-5309"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc00316d?page=search","citationCount":"0","resultStr":"{\"title\":\"3D printable organic room-temperature phosphorescent materials and printed real-time sensing and display devices†\",\"authors\":\"Haodong Sun, Yuxin Xiao, Yunfei He, Xiaoyu Wei, Jindou Zou, Yuanda Luo, Yazhang Wu, Jiaxin Zhao, Vonika Ka-Man Au and Tao Yu\",\"doi\":\"10.1039/D5SC00316D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer-based host–guest organic room-temperature phosphorescent (RTP) materials are promising candidates for new flexible electronic devices. Nowadays, the insufficient fabrication processes of polymeric RTP materials have hindered the development of these materials. Herein, we propose a strategy to realize 3D printable organic RTP materials and have successfully demonstrated real-time sensing and display devices through a Digital Light Processing (DLP) 3D printing process. We have designed and synthesized the molecules EtCzBP, PhCzBP and PhCzPM with A–D–A structures. The crucial role of strong intramolecular charge transfer (ICT) at the lowest triplet states in achieving bright photo-activated phosphorescence in polymer matrices has also been demonstrated. 3D printable RTP resins were manufactured by doping emissive guest molecules into methyl methacrylate (MMA). Based on these resins, a series of complex 3D structures and smart temperature responsive RTP performances were obtained by DLP 3D printing. Additionally, these RTP 3D structures have been applied in real-time temperature sensing and display panels for the first time. This work not only provides a guiding strategy for the design of emissive guest molecules to realize photo-activated RTP in poly(methyl methacrylate) (PMMA), but also paves the way for the development of 3D-printable real-time sensing structures and new-concept display devices.</p>\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\" 12\",\"pages\":\" 5299-5309\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc00316d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc00316d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc00316d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
3D printable organic room-temperature phosphorescent materials and printed real-time sensing and display devices†
Polymer-based host–guest organic room-temperature phosphorescent (RTP) materials are promising candidates for new flexible electronic devices. Nowadays, the insufficient fabrication processes of polymeric RTP materials have hindered the development of these materials. Herein, we propose a strategy to realize 3D printable organic RTP materials and have successfully demonstrated real-time sensing and display devices through a Digital Light Processing (DLP) 3D printing process. We have designed and synthesized the molecules EtCzBP, PhCzBP and PhCzPM with A–D–A structures. The crucial role of strong intramolecular charge transfer (ICT) at the lowest triplet states in achieving bright photo-activated phosphorescence in polymer matrices has also been demonstrated. 3D printable RTP resins were manufactured by doping emissive guest molecules into methyl methacrylate (MMA). Based on these resins, a series of complex 3D structures and smart temperature responsive RTP performances were obtained by DLP 3D printing. Additionally, these RTP 3D structures have been applied in real-time temperature sensing and display panels for the first time. This work not only provides a guiding strategy for the design of emissive guest molecules to realize photo-activated RTP in poly(methyl methacrylate) (PMMA), but also paves the way for the development of 3D-printable real-time sensing structures and new-concept display devices.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.