Shane McCarthy, William St. Clair, Damodar Pokhrel
{"title":"一个基于知识的计划模型,以确定脑立体定向放射治疗中分数降低的机会。","authors":"Shane McCarthy, William St. Clair, Damodar Pokhrel","doi":"10.1002/acm2.70055","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>To develop and validate a HyperArc-based RapidPlan (HARP) model for three-fraction brain stereotactic radiotherapy (SRT) plans to then use to replan previously treated five-fraction SRT plans. Demonstrating the possibility of reducing the number of fractions while achieving acceptable organs-at-risk (OAR) doses with improved target biological effective dose (BED) to brain lesions.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Thirty-nine high-quality clinical three-fraction HyperArc brain SRT plans (24–27 Gy) were used to train the HARP model, with a separate 10 plans used to validate its effectiveness. Fifty-eight five-fraction HyperArc brain SRT plans (30–40 Gy) attempted to be retrospectively replanned for three fractions scheme using the HARP model. All planning was done within the Eclipse treatment planning system for a TrueBeam LINAC with a 6 MV-FFF beam and Millenium 120 MLCs and dosimetric parameters were analyzed per brain SRT protocol.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The HyperArc RapidPlan model was successfully trained and tested, with the validation set demonstrating a statistically significant (<i>p</i> = 0.01) increase in GTV D<sub>100%</sub> from 28.5 ± 0.7 Gy to 29.4 ± 0.6 Gy from the original to RapidPlan plans. No statistically significant differences were found for the OAR metrics (<i>p</i> > 0.05). The five-fraction replans were successful for 20 of the 58 five-fraction brain SRT plans. For those 20 successful brain SRT plans, the maximum doses to OAR were clinically acceptable with a three-fraction scheme including an average V<sub>18Gy</sub> to Brain-PTV of 9.9 ± 5.9 cc. Additionally, the replanned five-fraction brain SRT plans achieved a higher BED to the tumors, increasing from a GTV D<sub>100%</sub> of 52.9 ± 4.5 Gy for the original five-fraction plans to 57.3 ± 3.1 Gy for the three-fraction RapidPlan plans. All RapidPlan plans were generated automatically, without manual input, in under 20 min.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The HARP model developed in this research was used to successfully identify select five-fraction plans that were able to be reduced to three-fraction SRT treatments while achieving clinically acceptable OAR doses and improved target BED. This tool encourages a fast and standardized way to provide physicians with more options when choosing the necessary fractionation scheme(s) for HyperArc SRT to single- and multiple brain lesions.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":"26 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.70055","citationCount":"0","resultStr":"{\"title\":\"A knowledge-based planning model to identify fraction-reduction opportunities in brain stereotactic radiotherapy\",\"authors\":\"Shane McCarthy, William St. Clair, Damodar Pokhrel\",\"doi\":\"10.1002/acm2.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>To develop and validate a HyperArc-based RapidPlan (HARP) model for three-fraction brain stereotactic radiotherapy (SRT) plans to then use to replan previously treated five-fraction SRT plans. Demonstrating the possibility of reducing the number of fractions while achieving acceptable organs-at-risk (OAR) doses with improved target biological effective dose (BED) to brain lesions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Thirty-nine high-quality clinical three-fraction HyperArc brain SRT plans (24–27 Gy) were used to train the HARP model, with a separate 10 plans used to validate its effectiveness. Fifty-eight five-fraction HyperArc brain SRT plans (30–40 Gy) attempted to be retrospectively replanned for three fractions scheme using the HARP model. All planning was done within the Eclipse treatment planning system for a TrueBeam LINAC with a 6 MV-FFF beam and Millenium 120 MLCs and dosimetric parameters were analyzed per brain SRT protocol.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The HyperArc RapidPlan model was successfully trained and tested, with the validation set demonstrating a statistically significant (<i>p</i> = 0.01) increase in GTV D<sub>100%</sub> from 28.5 ± 0.7 Gy to 29.4 ± 0.6 Gy from the original to RapidPlan plans. No statistically significant differences were found for the OAR metrics (<i>p</i> > 0.05). The five-fraction replans were successful for 20 of the 58 five-fraction brain SRT plans. For those 20 successful brain SRT plans, the maximum doses to OAR were clinically acceptable with a three-fraction scheme including an average V<sub>18Gy</sub> to Brain-PTV of 9.9 ± 5.9 cc. Additionally, the replanned five-fraction brain SRT plans achieved a higher BED to the tumors, increasing from a GTV D<sub>100%</sub> of 52.9 ± 4.5 Gy for the original five-fraction plans to 57.3 ± 3.1 Gy for the three-fraction RapidPlan plans. All RapidPlan plans were generated automatically, without manual input, in under 20 min.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The HARP model developed in this research was used to successfully identify select five-fraction plans that were able to be reduced to three-fraction SRT treatments while achieving clinically acceptable OAR doses and improved target BED. This tool encourages a fast and standardized way to provide physicians with more options when choosing the necessary fractionation scheme(s) for HyperArc SRT to single- and multiple brain lesions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.70055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acm2.70055\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.70055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A knowledge-based planning model to identify fraction-reduction opportunities in brain stereotactic radiotherapy
Objective
To develop and validate a HyperArc-based RapidPlan (HARP) model for three-fraction brain stereotactic radiotherapy (SRT) plans to then use to replan previously treated five-fraction SRT plans. Demonstrating the possibility of reducing the number of fractions while achieving acceptable organs-at-risk (OAR) doses with improved target biological effective dose (BED) to brain lesions.
Methods
Thirty-nine high-quality clinical three-fraction HyperArc brain SRT plans (24–27 Gy) were used to train the HARP model, with a separate 10 plans used to validate its effectiveness. Fifty-eight five-fraction HyperArc brain SRT plans (30–40 Gy) attempted to be retrospectively replanned for three fractions scheme using the HARP model. All planning was done within the Eclipse treatment planning system for a TrueBeam LINAC with a 6 MV-FFF beam and Millenium 120 MLCs and dosimetric parameters were analyzed per brain SRT protocol.
Results
The HyperArc RapidPlan model was successfully trained and tested, with the validation set demonstrating a statistically significant (p = 0.01) increase in GTV D100% from 28.5 ± 0.7 Gy to 29.4 ± 0.6 Gy from the original to RapidPlan plans. No statistically significant differences were found for the OAR metrics (p > 0.05). The five-fraction replans were successful for 20 of the 58 five-fraction brain SRT plans. For those 20 successful brain SRT plans, the maximum doses to OAR were clinically acceptable with a three-fraction scheme including an average V18Gy to Brain-PTV of 9.9 ± 5.9 cc. Additionally, the replanned five-fraction brain SRT plans achieved a higher BED to the tumors, increasing from a GTV D100% of 52.9 ± 4.5 Gy for the original five-fraction plans to 57.3 ± 3.1 Gy for the three-fraction RapidPlan plans. All RapidPlan plans were generated automatically, without manual input, in under 20 min.
Conclusions
The HARP model developed in this research was used to successfully identify select five-fraction plans that were able to be reduced to three-fraction SRT treatments while achieving clinically acceptable OAR doses and improved target BED. This tool encourages a fast and standardized way to provide physicians with more options when choosing the necessary fractionation scheme(s) for HyperArc SRT to single- and multiple brain lesions.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic