生物信号网络Petri网模型转化为影响图的一种算法。

IF 2 4区 生物学 Q2 BIOLOGY
Simon Gamache-Poirier , Alexia Souvane , William Leclerc , Catherine Villeneuve , Simon V. Hardy
{"title":"生物信号网络Petri网模型转化为影响图的一种算法。","authors":"Simon Gamache-Poirier ,&nbsp;Alexia Souvane ,&nbsp;William Leclerc ,&nbsp;Catherine Villeneuve ,&nbsp;Simon V. Hardy","doi":"10.1016/j.biosystems.2025.105415","DOIUrl":null,"url":null,"abstract":"<div><div>A common depiction for biological signaling networks is the influence graph in which the activation and inhibition effects between molecular species are shown with vertices and arcs connecting them. Another formalism for reaction-based models is the Petri nets which has a graphical representation and a mathematical notation that enables structural analysis and quantitative simulation. In this paper, we present an algorithm based on Petri nets topological features for the transformation of the computational model of a biological signaling network into an annotated influence graph. We also show the transformation of the Petri nets model of the beta-adrenergic receptor activating the PKA-MAPK signaling network into its representation as an influence graph.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"250 ","pages":"Article 105415"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algorithm for the transformation of the Petri net models of biological signaling networks into influence graphs\",\"authors\":\"Simon Gamache-Poirier ,&nbsp;Alexia Souvane ,&nbsp;William Leclerc ,&nbsp;Catherine Villeneuve ,&nbsp;Simon V. Hardy\",\"doi\":\"10.1016/j.biosystems.2025.105415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A common depiction for biological signaling networks is the influence graph in which the activation and inhibition effects between molecular species are shown with vertices and arcs connecting them. Another formalism for reaction-based models is the Petri nets which has a graphical representation and a mathematical notation that enables structural analysis and quantitative simulation. In this paper, we present an algorithm based on Petri nets topological features for the transformation of the computational model of a biological signaling network into an annotated influence graph. We also show the transformation of the Petri nets model of the beta-adrenergic receptor activating the PKA-MAPK signaling network into its representation as an influence graph.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"250 \",\"pages\":\"Article 105415\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264725000255\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725000255","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物信号网络的常见描述是影响图,其中分子物种之间的激活和抑制效应用顶点和圆弧连接起来。基于反应的模型的另一种形式是Petri网,它具有图形表示和数学符号,可以进行结构分析和定量模拟。本文提出了一种基于Petri网拓扑特征的算法,用于将生物信号网络的计算模型转换为带注释的影响图。我们还展示了β -肾上腺素能受体激活PKA-MAPK信号网络的Petri网模型转化为影响图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for the transformation of the Petri net models of biological signaling networks into influence graphs
A common depiction for biological signaling networks is the influence graph in which the activation and inhibition effects between molecular species are shown with vertices and arcs connecting them. Another formalism for reaction-based models is the Petri nets which has a graphical representation and a mathematical notation that enables structural analysis and quantitative simulation. In this paper, we present an algorithm based on Petri nets topological features for the transformation of the computational model of a biological signaling network into an annotated influence graph. We also show the transformation of the Petri nets model of the beta-adrenergic receptor activating the PKA-MAPK signaling network into its representation as an influence graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信