利用肿瘤大小-总体生存模型进行条件模拟以支持肿瘤药物开发教程。

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Sebastiaan C. Goulooze, Morris Muliaditan, Richard C. Franzese, Alejandro Mantero, Sandra A. G. Visser, Murad Melhem, Teun M. Post, Chetan Rathi, Herbert Struemper
{"title":"利用肿瘤大小-总体生存模型进行条件模拟以支持肿瘤药物开发教程。","authors":"Sebastiaan C. Goulooze,&nbsp;Morris Muliaditan,&nbsp;Richard C. Franzese,&nbsp;Alejandro Mantero,&nbsp;Sandra A. G. Visser,&nbsp;Murad Melhem,&nbsp;Teun M. Post,&nbsp;Chetan Rathi,&nbsp;Herbert Struemper","doi":"10.1002/psp4.70003","DOIUrl":null,"url":null,"abstract":"<p>The gold standard for regulatory approval in oncology is overall survival (OS). Because OS data are initially limited, early drug development decisions are often based on early efficacy endpoints, such as objective response rate and progression-free survival. Tumor size (TS)-OS models provide a framework to support decision-making on potential late-stage success based on early readouts, through leveraging TS data with limited follow-up and treatment-agnostic TS-OS link functions, to predict longer-term OS. Conditional simulations (also known as Bayesian forecasting) with TS-OS models can be used to simulate long-term OS outcomes for an ongoing study, conditional on the available TS and OS data at interim data cuts of the same study. This tutorial provides a comprehensive overview of the steps involved in using such conditional simulations to support better informed drug development decisions in oncology. The tutorial covers the selection of the TS-OS framework model; applying the TS-OS model to the interim data; performing conditional simulations; generating relevant output; as well as correct interpretation and communication of the output for decision making.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":"14 4","pages":"640-650"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.70003","citationCount":"0","resultStr":"{\"title\":\"Tutorial on Conditional Simulations With a Tumor Size-Overall Survival Model to Support Oncology Drug Development\",\"authors\":\"Sebastiaan C. Goulooze,&nbsp;Morris Muliaditan,&nbsp;Richard C. Franzese,&nbsp;Alejandro Mantero,&nbsp;Sandra A. G. Visser,&nbsp;Murad Melhem,&nbsp;Teun M. Post,&nbsp;Chetan Rathi,&nbsp;Herbert Struemper\",\"doi\":\"10.1002/psp4.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gold standard for regulatory approval in oncology is overall survival (OS). Because OS data are initially limited, early drug development decisions are often based on early efficacy endpoints, such as objective response rate and progression-free survival. Tumor size (TS)-OS models provide a framework to support decision-making on potential late-stage success based on early readouts, through leveraging TS data with limited follow-up and treatment-agnostic TS-OS link functions, to predict longer-term OS. Conditional simulations (also known as Bayesian forecasting) with TS-OS models can be used to simulate long-term OS outcomes for an ongoing study, conditional on the available TS and OS data at interim data cuts of the same study. This tutorial provides a comprehensive overview of the steps involved in using such conditional simulations to support better informed drug development decisions in oncology. The tutorial covers the selection of the TS-OS framework model; applying the TS-OS model to the interim data; performing conditional simulations; generating relevant output; as well as correct interpretation and communication of the output for decision making.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":\"14 4\",\"pages\":\"640-650\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psp4.70003\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psp4.70003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤学监管批准的黄金标准是总生存期(OS)。由于OS数据最初有限,早期药物开发决策通常基于早期疗效终点,如客观缓解率和无进展生存期。肿瘤大小(TS)-OS模型提供了一个框架,通过利用具有有限随访和治疗不可知的TS-OS链接功能的TS数据,支持基于早期读数的潜在晚期成功决策,以预测长期OS。使用TS-OS模型的条件模拟(也称为贝叶斯预测)可用于模拟正在进行的研究的长期OS结果,条件是同一研究的中期数据切割时可用的TS和OS数据。本教程全面概述了使用这种条件模拟来支持肿瘤学中更明智的药物开发决策所涉及的步骤。本教程涵盖了TS-OS框架模型的选择;将TS-OS模型应用于中期数据;进行条件模拟;产生相关的输出;以及正确的解释和沟通的输出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tutorial on Conditional Simulations With a Tumor Size-Overall Survival Model to Support Oncology Drug Development

Tutorial on Conditional Simulations With a Tumor Size-Overall Survival Model to Support Oncology Drug Development

The gold standard for regulatory approval in oncology is overall survival (OS). Because OS data are initially limited, early drug development decisions are often based on early efficacy endpoints, such as objective response rate and progression-free survival. Tumor size (TS)-OS models provide a framework to support decision-making on potential late-stage success based on early readouts, through leveraging TS data with limited follow-up and treatment-agnostic TS-OS link functions, to predict longer-term OS. Conditional simulations (also known as Bayesian forecasting) with TS-OS models can be used to simulate long-term OS outcomes for an ongoing study, conditional on the available TS and OS data at interim data cuts of the same study. This tutorial provides a comprehensive overview of the steps involved in using such conditional simulations to support better informed drug development decisions in oncology. The tutorial covers the selection of the TS-OS framework model; applying the TS-OS model to the interim data; performing conditional simulations; generating relevant output; as well as correct interpretation and communication of the output for decision making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信