基于多重正则化的自适应几何联合先验图像去模糊模型

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jiayin Yu , Lulu Zhang , Yang Wang, Caiying Wu
{"title":"基于多重正则化的自适应几何联合先验图像去模糊模型","authors":"Jiayin Yu ,&nbsp;Lulu Zhang ,&nbsp;Yang Wang,&nbsp;Caiying Wu","doi":"10.1016/j.physleta.2025.130388","DOIUrl":null,"url":null,"abstract":"<div><div>Curvature regularization has become a fundamental tool in image processing due to its strong priors for edge preservation. In this paper, we introduce a novel multi-regularization framework that incorporates Gaussian curvature, mean curvature and surface area, enabling adaptive selection of geometric priors in different regions based on their specific characteristics. To efficiently optimize this term, we utilize a curvature filter that implicitly enforces curvature constraints without the need for explicit calculations, significantly enhancing computational efficiency. Additionally, we incorporate gradient <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> norm constraint, which not only preserve image edges more effectively but also can promote the sparseness of the model. Our approach is further supported by an ADMM-based optimization algorithm tailored to solve the model. Extensive comparison experiments demonstrate the effectiveness, robustness, and superiority of the proposed regularization framework for image deblurring tasks.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"539 ","pages":"Article 130388"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive geometric joint prior image deblurring model based on multi-regularization\",\"authors\":\"Jiayin Yu ,&nbsp;Lulu Zhang ,&nbsp;Yang Wang,&nbsp;Caiying Wu\",\"doi\":\"10.1016/j.physleta.2025.130388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Curvature regularization has become a fundamental tool in image processing due to its strong priors for edge preservation. In this paper, we introduce a novel multi-regularization framework that incorporates Gaussian curvature, mean curvature and surface area, enabling adaptive selection of geometric priors in different regions based on their specific characteristics. To efficiently optimize this term, we utilize a curvature filter that implicitly enforces curvature constraints without the need for explicit calculations, significantly enhancing computational efficiency. Additionally, we incorporate gradient <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> norm constraint, which not only preserve image edges more effectively but also can promote the sparseness of the model. Our approach is further supported by an ADMM-based optimization algorithm tailored to solve the model. Extensive comparison experiments demonstrate the effectiveness, robustness, and superiority of the proposed regularization framework for image deblurring tasks.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"539 \",\"pages\":\"Article 130388\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125001689\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125001689","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

曲率正则化由于具有较强的边缘保持先验性,已成为图像处理中的一种基本工具。在本文中,我们引入了一种结合高斯曲率、平均曲率和表面积的多重正则化框架,可以根据不同区域的特征自适应地选择几何先验。为了有效地优化这一项,我们使用了一个曲率过滤器,它隐式地强制曲率约束,而不需要显式计算,显著提高了计算效率。此外,我们还引入了梯度Lp范数约束,不仅能更有效地保留图像边缘,而且能提高模型的稀疏性。我们的方法得到了一个基于admm的优化算法的进一步支持,该算法是为求解该模型量身定制的。大量的对比实验证明了所提出的正则化框架在图像去模糊任务中的有效性、鲁棒性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive geometric joint prior image deblurring model based on multi-regularization
Curvature regularization has become a fundamental tool in image processing due to its strong priors for edge preservation. In this paper, we introduce a novel multi-regularization framework that incorporates Gaussian curvature, mean curvature and surface area, enabling adaptive selection of geometric priors in different regions based on their specific characteristics. To efficiently optimize this term, we utilize a curvature filter that implicitly enforces curvature constraints without the need for explicit calculations, significantly enhancing computational efficiency. Additionally, we incorporate gradient Lp norm constraint, which not only preserve image edges more effectively but also can promote the sparseness of the model. Our approach is further supported by an ADMM-based optimization algorithm tailored to solve the model. Extensive comparison experiments demonstrate the effectiveness, robustness, and superiority of the proposed regularization framework for image deblurring tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信