具有传感器度量的模糊数空间的拓扑结构

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Wenjuan Liu , Zhongqiang Yang
{"title":"具有传感器度量的模糊数空间的拓扑结构","authors":"Wenjuan Liu ,&nbsp;Zhongqiang Yang","doi":"10.1016/j.fss.2025.109330","DOIUrl":null,"url":null,"abstract":"<div><div>For every non-degenerate convex subset <em>Y</em> of the <em>n</em>-dimensional Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, let <span><math><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo></math></span> denote the set of all fuzzy numbers, which are fuzzy sets that are upper semi-continuous, fuzzy convex and normal with compact supports contained in <em>Y</em>. Consider the sendograph metric <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> defined on <span><math><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo></math></span>. Zhang has proven that <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> is homeomorphic to the separable Hilbert space <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> when <em>Y</em> is compact or <span><math><mi>Y</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In this paper, we show that <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> is homeomorphic to <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if <em>Y</em> is topologically complete.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"508 ","pages":"Article 109330"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The topological structures of the spaces of fuzzy numbers with the sendograph metric\",\"authors\":\"Wenjuan Liu ,&nbsp;Zhongqiang Yang\",\"doi\":\"10.1016/j.fss.2025.109330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For every non-degenerate convex subset <em>Y</em> of the <em>n</em>-dimensional Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, let <span><math><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo></math></span> denote the set of all fuzzy numbers, which are fuzzy sets that are upper semi-continuous, fuzzy convex and normal with compact supports contained in <em>Y</em>. Consider the sendograph metric <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> defined on <span><math><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo></math></span>. Zhang has proven that <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> is homeomorphic to the separable Hilbert space <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> when <em>Y</em> is compact or <span><math><mi>Y</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In this paper, we show that <span><math><mo>(</mo><mi>K</mi><mo>(</mo><mi>Y</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> is homeomorphic to <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if <em>Y</em> is topologically complete.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"508 \",\"pages\":\"Article 109330\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011425000697\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425000697","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于n维欧氏空间Rn的每一个非退化凸子集Y,令K(Y)表示所有模糊数的集合,这些模糊数是Y中包含紧支撑的上半连续、模糊凸和正规模糊集。Zhang证明了(K(Y),D ')在Y紧或Y=Rn时与可分离Hilbert空间l2是同胚的。本文证明了(K(Y),D ')同胚于l2当且仅当Y拓扑完全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The topological structures of the spaces of fuzzy numbers with the sendograph metric
For every non-degenerate convex subset Y of the n-dimensional Euclidean space Rn, let K(Y) denote the set of all fuzzy numbers, which are fuzzy sets that are upper semi-continuous, fuzzy convex and normal with compact supports contained in Y. Consider the sendograph metric D defined on K(Y). Zhang has proven that (K(Y),D) is homeomorphic to the separable Hilbert space 2 when Y is compact or Y=Rn. In this paper, we show that (K(Y),D) is homeomorphic to 2 if and only if Y is topologically complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信