基于新型多模态Kolmogorov-Arnold融合网络的城市非正式住区解释,探索遥感和街景图像的分层特征

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Hongyang Niu, Runyu Fan, Jiajun Chen, Zijian Xu, Ruyi Feng
{"title":"基于新型多模态Kolmogorov-Arnold融合网络的城市非正式住区解释,探索遥感和街景图像的分层特征","authors":"Hongyang Niu,&nbsp;Runyu Fan,&nbsp;Jiajun Chen,&nbsp;Zijian Xu,&nbsp;Ruyi Feng","doi":"10.1016/j.srs.2025.100208","DOIUrl":null,"url":null,"abstract":"<div><div>Urban informal settlements (UIS) interpretation has important scientific value for achieving urban sustainable development. Recent research on UIS interpretation tasks mainly includes the single-modality method, which uses remote sensing images, and the multi-modality method which uses remote sensing and geospatial data. However, from a single remote sensing perspective, the inter-class similarities, and a regional mixture of complex geo-objects from a bird-eye perspective of UIS areas make UIS interpretation extremely challenging. The current multi-modal methods cannot fully explore the modality-specific features within the modality or ignore the modality-correlation features between different modalities. To address these issues, this study proposed a novel multi-modal Kolmogorov–Arnold fusion network, namely KANFusion, to explore the modality-specific features within the modality and fuse the modality-correlation features between different modalities to boost UIS interpretation using remote sensing and street view images. The proposed KANFusion model employs the Kolmogorov–Arnold Network (KAN) instead of the conventional MLP structure to enhance the model-fitting capability of heterogeneous modality-specific features and uses a novel Multi-level Feature Fusion Module with KAN block (MFF) to fuse the hierarchical modality-specific and modality-fusion features from remote sensing and street view images for better UIS interpretation performance. We conducted extensive experiments on the manually annotated ChinaUIS dataset of eight megacities in China and a public <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>U</mi><mi>V</mi></mrow></math></span> dataset and compared the proposed KANFusion with other state-of-the-art methods. The experimental results confirmed the superiority of the proposed KANFusion. This work is available in <span><span>https://github.com/cyg-nhyang/KANFusion</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100208"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban informal settlements interpretation via a novel multi-modal Kolmogorov–Arnold fusion network by exploring hierarchical features from remote sensing and street view images\",\"authors\":\"Hongyang Niu,&nbsp;Runyu Fan,&nbsp;Jiajun Chen,&nbsp;Zijian Xu,&nbsp;Ruyi Feng\",\"doi\":\"10.1016/j.srs.2025.100208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Urban informal settlements (UIS) interpretation has important scientific value for achieving urban sustainable development. Recent research on UIS interpretation tasks mainly includes the single-modality method, which uses remote sensing images, and the multi-modality method which uses remote sensing and geospatial data. However, from a single remote sensing perspective, the inter-class similarities, and a regional mixture of complex geo-objects from a bird-eye perspective of UIS areas make UIS interpretation extremely challenging. The current multi-modal methods cannot fully explore the modality-specific features within the modality or ignore the modality-correlation features between different modalities. To address these issues, this study proposed a novel multi-modal Kolmogorov–Arnold fusion network, namely KANFusion, to explore the modality-specific features within the modality and fuse the modality-correlation features between different modalities to boost UIS interpretation using remote sensing and street view images. The proposed KANFusion model employs the Kolmogorov–Arnold Network (KAN) instead of the conventional MLP structure to enhance the model-fitting capability of heterogeneous modality-specific features and uses a novel Multi-level Feature Fusion Module with KAN block (MFF) to fuse the hierarchical modality-specific and modality-fusion features from remote sensing and street view images for better UIS interpretation performance. We conducted extensive experiments on the manually annotated ChinaUIS dataset of eight megacities in China and a public <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>U</mi><mi>V</mi></mrow></math></span> dataset and compared the proposed KANFusion with other state-of-the-art methods. The experimental results confirmed the superiority of the proposed KANFusion. This work is available in <span><span>https://github.com/cyg-nhyang/KANFusion</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":101147,\"journal\":{\"name\":\"Science of Remote Sensing\",\"volume\":\"11 \",\"pages\":\"Article 100208\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666017225000148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017225000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市非正式住区(UIS)解释对于实现城市可持续发展具有重要的科学价值。近年来对UIS解译任务的研究主要包括利用遥感影像的单模态解译方法和利用遥感和地理空间数据的多模态解译方法。然而,从单一的遥感角度来看,从美国地区的鸟瞰角度来看,类间相似性和复杂地理目标的区域混合使得美国的解释极具挑战性。现有的多模态方法不能充分挖掘模态内部的模态特征,也忽略了不同模态之间的模态关联特征。为了解决这些问题,本研究提出了一种新的多模态Kolmogorov-Arnold融合网络,即KANFusion,以探索模态内部的模态特定特征,并融合不同模态之间的模态相关特征,从而提高遥感和街景图像的美国遥感解译能力。本文提出的KANFusion模型采用Kolmogorov-Arnold网络(KAN)代替传统的MLP结构来增强异构模态特征的模型拟合能力,并使用一种新型的带有KAN块的多级特征融合模块(Multi-level Feature Fusion Module, MFF)来融合来自遥感和街景图像的分层模态特征和模态融合特征,以提高UIS解译性能。我们在中国8个特大城市的人工标注的ChinaUIS数据集和一个公共的S2UV数据集上进行了广泛的实验,并将所提出的KANFusion与其他最先进的方法进行了比较。实验结果证实了所提出的KANFusion的优越性。这项工作可在https://github.com/cyg-nhyang/KANFusion上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban informal settlements interpretation via a novel multi-modal Kolmogorov–Arnold fusion network by exploring hierarchical features from remote sensing and street view images
Urban informal settlements (UIS) interpretation has important scientific value for achieving urban sustainable development. Recent research on UIS interpretation tasks mainly includes the single-modality method, which uses remote sensing images, and the multi-modality method which uses remote sensing and geospatial data. However, from a single remote sensing perspective, the inter-class similarities, and a regional mixture of complex geo-objects from a bird-eye perspective of UIS areas make UIS interpretation extremely challenging. The current multi-modal methods cannot fully explore the modality-specific features within the modality or ignore the modality-correlation features between different modalities. To address these issues, this study proposed a novel multi-modal Kolmogorov–Arnold fusion network, namely KANFusion, to explore the modality-specific features within the modality and fuse the modality-correlation features between different modalities to boost UIS interpretation using remote sensing and street view images. The proposed KANFusion model employs the Kolmogorov–Arnold Network (KAN) instead of the conventional MLP structure to enhance the model-fitting capability of heterogeneous modality-specific features and uses a novel Multi-level Feature Fusion Module with KAN block (MFF) to fuse the hierarchical modality-specific and modality-fusion features from remote sensing and street view images for better UIS interpretation performance. We conducted extensive experiments on the manually annotated ChinaUIS dataset of eight megacities in China and a public S2UV dataset and compared the proposed KANFusion with other state-of-the-art methods. The experimental results confirmed the superiority of the proposed KANFusion. This work is available in https://github.com/cyg-nhyang/KANFusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信