具有各向异性变形的ReSeS单层中电子结构的调控

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Timsy Tinche Lin , Haochen Deng , Junwei Ma , Lizhe Liu
{"title":"具有各向异性变形的ReSeS单层中电子结构的调控","authors":"Timsy Tinche Lin ,&nbsp;Haochen Deng ,&nbsp;Junwei Ma ,&nbsp;Lizhe Liu","doi":"10.1016/j.physe.2025.116210","DOIUrl":null,"url":null,"abstract":"<div><div>Because of their unique and rich physical properties, transition metal dichalcogenides (TMDs) materials have attracted much interest. Many studies suggest that introducing the degree of freedom of anisotropy—which may be brought about by low structural symmetry—might further optimize their applications in industry and manufacturing. However, most currently reported TMDs do not achieve the theoretical minimum symmetry. Utilizing the first principles calculation, we present ReSeS monolayer with a Janus structure. Results indicate that its electronic dispersion is sensitive to structural distortions, which increases metallicity. Our reduction-Hamiltonian can provide a qualitative description, but further analyses reveal that bonding/antibonding properties near the Fermi surface are the more fundamental cause of the variations. Furthermore, geometric deformations can regulate the effective mass of electrons as well as the spectroscopic response, resulting in anisotropic behaviours. Our ideas serve as a foundation for developing new regulable optoelectronic devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116210"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of electronic structures in ReSeS monolayer with anisotropic deformations\",\"authors\":\"Timsy Tinche Lin ,&nbsp;Haochen Deng ,&nbsp;Junwei Ma ,&nbsp;Lizhe Liu\",\"doi\":\"10.1016/j.physe.2025.116210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Because of their unique and rich physical properties, transition metal dichalcogenides (TMDs) materials have attracted much interest. Many studies suggest that introducing the degree of freedom of anisotropy—which may be brought about by low structural symmetry—might further optimize their applications in industry and manufacturing. However, most currently reported TMDs do not achieve the theoretical minimum symmetry. Utilizing the first principles calculation, we present ReSeS monolayer with a Janus structure. Results indicate that its electronic dispersion is sensitive to structural distortions, which increases metallicity. Our reduction-Hamiltonian can provide a qualitative description, but further analyses reveal that bonding/antibonding properties near the Fermi surface are the more fundamental cause of the variations. Furthermore, geometric deformations can regulate the effective mass of electrons as well as the spectroscopic response, resulting in anisotropic behaviours. Our ideas serve as a foundation for developing new regulable optoelectronic devices.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"170 \",\"pages\":\"Article 116210\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725000359\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000359","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫族化合物(TMDs)材料以其独特而丰富的物理性质引起了人们的广泛关注。许多研究表明,引入各向异性的自由度(这可能是由低结构对称性带来的)可以进一步优化它们在工业和制造业中的应用。然而,目前报道的大多数tmd都没有达到理论上的最小对称性。利用第一性原理计算,我们提出了具有Janus结构的ReSeS单层。结果表明,其电子色散对结构畸变很敏感,从而增加了金属丰度。我们的简化-哈密顿量可以提供一个定性的描述,但进一步的分析表明,费米表面附近的成键/反键性质是导致这些变化的更根本的原因。此外,几何变形可以调节电子的有效质量以及光谱响应,从而导致各向异性行为。我们的想法为开发新的可调节光电器件奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulation of electronic structures in ReSeS monolayer with anisotropic deformations

Regulation of electronic structures in ReSeS monolayer with anisotropic deformations
Because of their unique and rich physical properties, transition metal dichalcogenides (TMDs) materials have attracted much interest. Many studies suggest that introducing the degree of freedom of anisotropy—which may be brought about by low structural symmetry—might further optimize their applications in industry and manufacturing. However, most currently reported TMDs do not achieve the theoretical minimum symmetry. Utilizing the first principles calculation, we present ReSeS monolayer with a Janus structure. Results indicate that its electronic dispersion is sensitive to structural distortions, which increases metallicity. Our reduction-Hamiltonian can provide a qualitative description, but further analyses reveal that bonding/antibonding properties near the Fermi surface are the more fundamental cause of the variations. Furthermore, geometric deformations can regulate the effective mass of electrons as well as the spectroscopic response, resulting in anisotropic behaviours. Our ideas serve as a foundation for developing new regulable optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信