通过在浓溶液中形成阴离子衍生的界面来稳定准固体电解质中的固/液界面

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jumpei Kondo, Kazushi Otani, Suguru Miyamoto, Hideaki Hikosaka, Yasuyuki Kondo, Yu Katayama and Yuki Yamada*, 
{"title":"通过在浓溶液中形成阴离子衍生的界面来稳定准固体电解质中的固/液界面","authors":"Jumpei Kondo,&nbsp;Kazushi Otani,&nbsp;Suguru Miyamoto,&nbsp;Hideaki Hikosaka,&nbsp;Yasuyuki Kondo,&nbsp;Yu Katayama and Yuki Yamada*,&nbsp;","doi":"10.1021/acsaem.4c0330710.1021/acsaem.4c03307","DOIUrl":null,"url":null,"abstract":"<p >Quasi-solid electrolytes, composed of a garnet-type solid electrolyte (lithium lanthanum zirconium oxide, LLZO) and a liquid electrolyte, are promising for next-generation batteries with high safety and high energy density. However, they have faced a critical challenge of continuously increasing Li<sup>+</sup>-transport resistance at the unstable LLZO/liquid electrolyte interface, which has hampered the effective utilization of both solid and liquid phases for Li<sup>+</sup> conduction. Herein, we report the stabilization of the LLZO/liquid electrolyte interface by using a concentrated LiN(SO<sub>2</sub>F)<sub>2</sub> (LiFSI)/sulfolane (SL) electrolyte. A stable LiF-rich interphase layer is formed on the LLZO surface through the decomposition of FSI anions in the highly concentrated LiFSI/SL, which effectively suppresses the increase in the interfacial resistance. The preferential decomposition of FSI anions results from extensive Li<sup>+</sup>-FSI<sup>–</sup> ion pairing unique to high concentrations, which makes the FSI anions susceptible to nucleophilic attack. These findings provide insights into the design of highly conductive quasi-solid electrolytes through controlling the solution structure of the liquid phase.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 4","pages":"2630–2637 2630–2637"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c03307","citationCount":"0","resultStr":"{\"title\":\"Stabilizing the Solid/Liquid Interface in Quasi-Solid Electrolytes via Anion-Derived Interphase Formation in Concentrated Solutions\",\"authors\":\"Jumpei Kondo,&nbsp;Kazushi Otani,&nbsp;Suguru Miyamoto,&nbsp;Hideaki Hikosaka,&nbsp;Yasuyuki Kondo,&nbsp;Yu Katayama and Yuki Yamada*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0330710.1021/acsaem.4c03307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Quasi-solid electrolytes, composed of a garnet-type solid electrolyte (lithium lanthanum zirconium oxide, LLZO) and a liquid electrolyte, are promising for next-generation batteries with high safety and high energy density. However, they have faced a critical challenge of continuously increasing Li<sup>+</sup>-transport resistance at the unstable LLZO/liquid electrolyte interface, which has hampered the effective utilization of both solid and liquid phases for Li<sup>+</sup> conduction. Herein, we report the stabilization of the LLZO/liquid electrolyte interface by using a concentrated LiN(SO<sub>2</sub>F)<sub>2</sub> (LiFSI)/sulfolane (SL) electrolyte. A stable LiF-rich interphase layer is formed on the LLZO surface through the decomposition of FSI anions in the highly concentrated LiFSI/SL, which effectively suppresses the increase in the interfacial resistance. The preferential decomposition of FSI anions results from extensive Li<sup>+</sup>-FSI<sup>–</sup> ion pairing unique to high concentrations, which makes the FSI anions susceptible to nucleophilic attack. These findings provide insights into the design of highly conductive quasi-solid electrolytes through controlling the solution structure of the liquid phase.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 4\",\"pages\":\"2630–2637 2630–2637\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c03307\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c03307\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03307","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

准固体电解质是由石榴石型固体电解质(LLZO)和液体电解质组成的,具有高安全性和高能量密度的下一代电池。然而,在不稳定的LLZO/liquid电解质界面处,Li+输运电阻不断增加,阻碍了固液相对Li+传导的有效利用。本文报道了用浓LiN(SO2F)2 (LiFSI)/硫代砜(SL)电解质稳定LLZO/液体电解质界面的方法。在高浓度的LiFSI/SL中,通过FSI阴离子的分解,在LLZO表面形成稳定的富liff界面层,有效抑制了界面阻力的增加。FSI阴离子的优先分解是由于高浓度的Li+-FSI离子对,这使得FSI阴离子容易受到亲核攻击。这些发现为通过控制液相溶液结构来设计高导电性准固体电解质提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing the Solid/Liquid Interface in Quasi-Solid Electrolytes via Anion-Derived Interphase Formation in Concentrated Solutions

Quasi-solid electrolytes, composed of a garnet-type solid electrolyte (lithium lanthanum zirconium oxide, LLZO) and a liquid electrolyte, are promising for next-generation batteries with high safety and high energy density. However, they have faced a critical challenge of continuously increasing Li+-transport resistance at the unstable LLZO/liquid electrolyte interface, which has hampered the effective utilization of both solid and liquid phases for Li+ conduction. Herein, we report the stabilization of the LLZO/liquid electrolyte interface by using a concentrated LiN(SO2F)2 (LiFSI)/sulfolane (SL) electrolyte. A stable LiF-rich interphase layer is formed on the LLZO surface through the decomposition of FSI anions in the highly concentrated LiFSI/SL, which effectively suppresses the increase in the interfacial resistance. The preferential decomposition of FSI anions results from extensive Li+-FSI ion pairing unique to high concentrations, which makes the FSI anions susceptible to nucleophilic attack. These findings provide insights into the design of highly conductive quasi-solid electrolytes through controlling the solution structure of the liquid phase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信