利用可见光:聚二乙炔- rh配合物用于NADH光再生和CO2还原

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Souvik Maity, Yumi Park, Thamilarasan Vijayan, Atifa Ashraf, Abida Batool and Jinheung Kim*, 
{"title":"利用可见光:聚二乙炔- rh配合物用于NADH光再生和CO2还原","authors":"Souvik Maity,&nbsp;Yumi Park,&nbsp;Thamilarasan Vijayan,&nbsp;Atifa Ashraf,&nbsp;Abida Batool and Jinheung Kim*,&nbsp;","doi":"10.1021/acsaem.4c0299910.1021/acsaem.4c02999","DOIUrl":null,"url":null,"abstract":"<p >In the quest for artificial photosynthesis, this study introduces an approach involving the design and synthesis of key components for direct solar fuel production from CO<sub>2</sub>. We developed a conjugated polymer chromophore, specifically poly(diacetylene) (PDA), and covalently bonded it to a rhodium(III) catalyst. This polymer acts as both a visible-light harvestor and a structural scaffold for catalyst immobilization. UV irradiation polymerized the phenanthroline-doped diacetylene monomer, yielding (Cp*)Rh(phen-)-PDA (PDA-Rh), where Cp* is pentamethylcyclopentadienyl and phen is a 1,10-phenanthroline derivative. PDA-Rh proved capable of chemically regenerating NADH in the presence of sodium formate, albeit at a slower rate than [Rh(Cp*)(phen)Cl]<sup>+</sup>, attributed to PDA-Rh’s lower diffusion coefficient. Notably, PDA-Rh facilitated a 40% NADH regeneration within 24 h under visible light, significantly outperforming the [Rh(Cp*)(phen)Cl]<sup>+</sup> and PDA mixture under the same conditions. Further investigations into the photophysical and electrochemical behaviors of PDA and PDA-Rh, both in solution and at the TiO<sub>2</sub> interface, revealed electron transfer from the photoexcited PDA to [(Cp*)RhCl(phen-)], initiating the reduction of Rh(III) to active intermediates. Subsequent CO<sub>2</sub> reduction experiments, leveraging the photogenerated NADH by PDA-Rh and NADH-dependent formate dehydrogenase, demonstrated that PDA-Rh significantly enhances CO<sub>2</sub> conversion, surpassing the control system of PDA and [Rh(Cp*)(phen)Cl]<sup>+</sup>.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 4","pages":"2498–2505 2498–2505"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Visible Light: A Polydiacetylene–Rh Complex for NADH Photoregeneration and CO2 Reduction\",\"authors\":\"Souvik Maity,&nbsp;Yumi Park,&nbsp;Thamilarasan Vijayan,&nbsp;Atifa Ashraf,&nbsp;Abida Batool and Jinheung Kim*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0299910.1021/acsaem.4c02999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the quest for artificial photosynthesis, this study introduces an approach involving the design and synthesis of key components for direct solar fuel production from CO<sub>2</sub>. We developed a conjugated polymer chromophore, specifically poly(diacetylene) (PDA), and covalently bonded it to a rhodium(III) catalyst. This polymer acts as both a visible-light harvestor and a structural scaffold for catalyst immobilization. UV irradiation polymerized the phenanthroline-doped diacetylene monomer, yielding (Cp*)Rh(phen-)-PDA (PDA-Rh), where Cp* is pentamethylcyclopentadienyl and phen is a 1,10-phenanthroline derivative. PDA-Rh proved capable of chemically regenerating NADH in the presence of sodium formate, albeit at a slower rate than [Rh(Cp*)(phen)Cl]<sup>+</sup>, attributed to PDA-Rh’s lower diffusion coefficient. Notably, PDA-Rh facilitated a 40% NADH regeneration within 24 h under visible light, significantly outperforming the [Rh(Cp*)(phen)Cl]<sup>+</sup> and PDA mixture under the same conditions. Further investigations into the photophysical and electrochemical behaviors of PDA and PDA-Rh, both in solution and at the TiO<sub>2</sub> interface, revealed electron transfer from the photoexcited PDA to [(Cp*)RhCl(phen-)], initiating the reduction of Rh(III) to active intermediates. Subsequent CO<sub>2</sub> reduction experiments, leveraging the photogenerated NADH by PDA-Rh and NADH-dependent formate dehydrogenase, demonstrated that PDA-Rh significantly enhances CO<sub>2</sub> conversion, surpassing the control system of PDA and [Rh(Cp*)(phen)Cl]<sup>+</sup>.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 4\",\"pages\":\"2498–2505 2498–2505\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02999\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02999","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在探索人工光合作用的过程中,本研究介绍了一种方法,包括设计和合成从二氧化碳中直接生产太阳能燃料的关键部件。我们开发了一种共轭聚合物发色团,特别是聚二乙炔(PDA),并将其共价键合到铑(III)催化剂上。这种聚合物既可以作为可见光收集器,又可以作为固定催化剂的结构支架。紫外辐照聚合了掺杂菲罗啉的二乙炔单体,得到(Cp*)Rh(phenen -)- pda (PDA-Rh),其中Cp*为五甲基环戊二烯基,phen为1,10-菲罗啉衍生物。事实证明,在甲酸钠存在的情况下,PDA-Rh能够化学再生NADH,尽管速度比[Rh(Cp*)(phen)Cl]+慢,这是由于PDA-Rh的扩散系数较低。值得注意的是,在可见光下,PDA-Rh在24 h内促进了40%的NADH再生,显著优于相同条件下[Rh(Cp*)(phen)Cl]+和PDA混合物。进一步研究了PDA和PDA-Rh在溶液和TiO2界面上的光物理和电化学行为,发现电子从光激发的PDA转移到[(Cp*)RhCl(phen-)],引发了Rh(III)还原为活性中间体。随后的CO2还原实验,利用由PDA-Rh和NADH依赖的甲酸脱氢酶光生成的NADH,表明PDA-Rh显著提高了CO2转化,超过了PDA和[Rh(Cp*)(phen)Cl]+的控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Visible Light: A Polydiacetylene–Rh Complex for NADH Photoregeneration and CO2 Reduction

Harnessing Visible Light: A Polydiacetylene–Rh Complex for NADH Photoregeneration and CO2 Reduction

In the quest for artificial photosynthesis, this study introduces an approach involving the design and synthesis of key components for direct solar fuel production from CO2. We developed a conjugated polymer chromophore, specifically poly(diacetylene) (PDA), and covalently bonded it to a rhodium(III) catalyst. This polymer acts as both a visible-light harvestor and a structural scaffold for catalyst immobilization. UV irradiation polymerized the phenanthroline-doped diacetylene monomer, yielding (Cp*)Rh(phen-)-PDA (PDA-Rh), where Cp* is pentamethylcyclopentadienyl and phen is a 1,10-phenanthroline derivative. PDA-Rh proved capable of chemically regenerating NADH in the presence of sodium formate, albeit at a slower rate than [Rh(Cp*)(phen)Cl]+, attributed to PDA-Rh’s lower diffusion coefficient. Notably, PDA-Rh facilitated a 40% NADH regeneration within 24 h under visible light, significantly outperforming the [Rh(Cp*)(phen)Cl]+ and PDA mixture under the same conditions. Further investigations into the photophysical and electrochemical behaviors of PDA and PDA-Rh, both in solution and at the TiO2 interface, revealed electron transfer from the photoexcited PDA to [(Cp*)RhCl(phen-)], initiating the reduction of Rh(III) to active intermediates. Subsequent CO2 reduction experiments, leveraging the photogenerated NADH by PDA-Rh and NADH-dependent formate dehydrogenase, demonstrated that PDA-Rh significantly enhances CO2 conversion, surpassing the control system of PDA and [Rh(Cp*)(phen)Cl]+.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信