非中心隧道影响下土拱演化的宏微观机制

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Rui-Xiao Zhang, Dong Su, Xiang-Sheng Chen, Xing-Tao Lin, Hao Xiong, De-Jin Zhang
{"title":"非中心隧道影响下土拱演化的宏微观机制","authors":"Rui-Xiao Zhang,&nbsp;Dong Su,&nbsp;Xiang-Sheng Chen,&nbsp;Xing-Tao Lin,&nbsp;Hao Xiong,&nbsp;De-Jin Zhang","doi":"10.1002/nag.3962","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Further investigation into the progression of soil arching under the impact of noncentered tunnel is warranted. This study addresses this need by examining trapdoor models with varying vertical and horizontal spacings between the tunnel and the trapdoor through the discrete element method. The numerical model underwent calibration utilizing data from previous experiments. The results indicated that the soil arching ratio under the impact of noncentered tunnel exhibits four distinct stages: initial soil arching, maximum soil arching, load recovery, and ultimate stage, aligning with observations unaffected by tunnel presence. The minimal disparity in stress ratio within the stationary region was observed when the vertical spacing between the tunnel and the trapdoor ranges between 150 and 200 mm. Moreover, the disturbed area on the left part of the trapdoor extended significantly beyond the trapdoor width, with notably higher disturbance height compared to the right side. When the tunnel deviated from the centerline of the trapdoor, the stress enhancement on the right side was considerably greater compared to the left. Additionally, the displacement of the trapdoor resulted in a reduction of contact force anisotropy in the soil on the side more distant from the tunnel, while increasing it on the side closer to the tunnel.</p>\n </div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"49 7","pages":"1891-1910"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macro- and Microscopic Mechanisms of Soil Arching Evolution Under the Impact of Noncentered Tunnel\",\"authors\":\"Rui-Xiao Zhang,&nbsp;Dong Su,&nbsp;Xiang-Sheng Chen,&nbsp;Xing-Tao Lin,&nbsp;Hao Xiong,&nbsp;De-Jin Zhang\",\"doi\":\"10.1002/nag.3962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Further investigation into the progression of soil arching under the impact of noncentered tunnel is warranted. This study addresses this need by examining trapdoor models with varying vertical and horizontal spacings between the tunnel and the trapdoor through the discrete element method. The numerical model underwent calibration utilizing data from previous experiments. The results indicated that the soil arching ratio under the impact of noncentered tunnel exhibits four distinct stages: initial soil arching, maximum soil arching, load recovery, and ultimate stage, aligning with observations unaffected by tunnel presence. The minimal disparity in stress ratio within the stationary region was observed when the vertical spacing between the tunnel and the trapdoor ranges between 150 and 200 mm. Moreover, the disturbed area on the left part of the trapdoor extended significantly beyond the trapdoor width, with notably higher disturbance height compared to the right side. When the tunnel deviated from the centerline of the trapdoor, the stress enhancement on the right side was considerably greater compared to the left. Additionally, the displacement of the trapdoor resulted in a reduction of contact force anisotropy in the soil on the side more distant from the tunnel, while increasing it on the side closer to the tunnel.</p>\\n </div>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"49 7\",\"pages\":\"1891-1910\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3962\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3962","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

进一步研究非中心隧道作用下土拱的演化是有必要的。本研究通过离散元法研究隧道与活板门之间垂直和水平间距不同的活板门模型,解决了这一需求。利用以往实验数据对数值模型进行了校正。结果表明:非中心隧道影响下的土拱比呈现出初始土拱、最大土拱、荷载恢复和极限阶段4个不同阶段,与不受隧道影响的观测结果一致;当巷道与活板门的垂直间距在150 ~ 200 mm之间时,固定区内应力比差最小。活板门左侧扰动区域明显超出活板门宽度,扰动高度明显高于右侧。当巷道偏离活板门中心线时,巷道右侧应力增强明显大于左侧。此外,活板门的位移导致距离隧道较远一侧土体接触力各向异性减小,而距离隧道较近一侧土体接触力各向异性增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macro- and Microscopic Mechanisms of Soil Arching Evolution Under the Impact of Noncentered Tunnel

Further investigation into the progression of soil arching under the impact of noncentered tunnel is warranted. This study addresses this need by examining trapdoor models with varying vertical and horizontal spacings between the tunnel and the trapdoor through the discrete element method. The numerical model underwent calibration utilizing data from previous experiments. The results indicated that the soil arching ratio under the impact of noncentered tunnel exhibits four distinct stages: initial soil arching, maximum soil arching, load recovery, and ultimate stage, aligning with observations unaffected by tunnel presence. The minimal disparity in stress ratio within the stationary region was observed when the vertical spacing between the tunnel and the trapdoor ranges between 150 and 200 mm. Moreover, the disturbed area on the left part of the trapdoor extended significantly beyond the trapdoor width, with notably higher disturbance height compared to the right side. When the tunnel deviated from the centerline of the trapdoor, the stress enhancement on the right side was considerably greater compared to the left. Additionally, the displacement of the trapdoor resulted in a reduction of contact force anisotropy in the soil on the side more distant from the tunnel, while increasing it on the side closer to the tunnel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信