FXYD5通过EMT调控胃癌细胞转移和耐药。

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuning Mao, Yaohua Hu, Han Meng, Jing Qin, Qingling An, Caiqin Zhang, Chenbo Guo, Yong Zhao, Dengxu Tan, Xu Ge, Changhong Shi
{"title":"FXYD5通过EMT调控胃癌细胞转移和耐药。","authors":"Yuning Mao, Yaohua Hu, Han Meng, Jing Qin, Qingling An, Caiqin Zhang, Chenbo Guo, Yong Zhao, Dengxu Tan, Xu Ge, Changhong Shi","doi":"10.1038/s41417-025-00878-9","DOIUrl":null,"url":null,"abstract":"Gastric cancer (GC) is the third leading cause of cancer-related mortality and the fourth most prevalent malignancy globally. The high prevalence and mortality rates of GC are attributed to various factors, including drug resistance, local recurrence, and distant metastases. There is an urgent need to identify novel therapeutic targets for GC. Patient-derived xenografts (PDX) model offers unique advantages in maintaining the molecular heterogeneity and tumor microenvironment of primary tumors, offering significant advantages for the screening of personalized therapeutic targets. In this study, we established GC PDX models with metastatic potential through orthotopic transplantation and investigated the different gene expressions between primary and metastatic tumors using PCR-array analysis. We found that the metastatic tumors displayed elevated levels of FXYD domain-containing ion transport regulator 5 (FXYD5) compared to the primary tumors. Additionally, reducing FXYD5 expression was found to inhibit the invasion, metastasis, and proliferation of GC cells. Silencing FXYD5 also reversed the resistance of GC cells to doxorubicin and vincristine by modulating the epithelial–mesenchymal transition (EMT) process and the expression of multidrug resistance protein 2. This study indicates that FXYD5 is involved in GC progression and regulates chemotherapy resistance, suggesting its potential as a novel therapeutic target for the clinical treatment of GC.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 3","pages":"318-326"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation\",\"authors\":\"Yuning Mao, Yaohua Hu, Han Meng, Jing Qin, Qingling An, Caiqin Zhang, Chenbo Guo, Yong Zhao, Dengxu Tan, Xu Ge, Changhong Shi\",\"doi\":\"10.1038/s41417-025-00878-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gastric cancer (GC) is the third leading cause of cancer-related mortality and the fourth most prevalent malignancy globally. The high prevalence and mortality rates of GC are attributed to various factors, including drug resistance, local recurrence, and distant metastases. There is an urgent need to identify novel therapeutic targets for GC. Patient-derived xenografts (PDX) model offers unique advantages in maintaining the molecular heterogeneity and tumor microenvironment of primary tumors, offering significant advantages for the screening of personalized therapeutic targets. In this study, we established GC PDX models with metastatic potential through orthotopic transplantation and investigated the different gene expressions between primary and metastatic tumors using PCR-array analysis. We found that the metastatic tumors displayed elevated levels of FXYD domain-containing ion transport regulator 5 (FXYD5) compared to the primary tumors. Additionally, reducing FXYD5 expression was found to inhibit the invasion, metastasis, and proliferation of GC cells. Silencing FXYD5 also reversed the resistance of GC cells to doxorubicin and vincristine by modulating the epithelial–mesenchymal transition (EMT) process and the expression of multidrug resistance protein 2. This study indicates that FXYD5 is involved in GC progression and regulates chemotherapy resistance, suggesting its potential as a novel therapeutic target for the clinical treatment of GC.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"32 3\",\"pages\":\"318-326\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-025-00878-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-025-00878-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胃癌(GC)是癌症相关死亡的第三大原因,也是全球第四大最常见的恶性肿瘤。胃癌的高患病率和高死亡率与多种因素有关,包括耐药性、局部复发和远处转移。迫切需要确定新的治疗靶点的GC。患者源性异种移植(Patient-derived xenografts, PDX)模型在维持原发肿瘤的分子异质性和肿瘤微环境方面具有独特优势,为个性化治疗靶点的筛选提供了显著优势。在本研究中,我们通过原位移植建立了具有转移潜力的GC - PDX模型,并利用PCR-array分析了原发肿瘤和转移肿瘤之间基因表达的差异。我们发现,与原发肿瘤相比,转移性肿瘤显示FXYD结构域离子运输调节剂5 (FXYD5)水平升高。此外,降低FXYD5的表达可抑制胃癌细胞的侵袭、转移和增殖。FXYD5的沉默也通过调节上皮-间质转化(epithelial-mesenchymal transition, EMT)过程和多药耐药蛋白2的表达逆转了GC细胞对阿霉素和新碱的耐药。本研究提示FXYD5参与胃癌的进展并调控化疗耐药,提示其可能成为临床治疗胃癌的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation

FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation
Gastric cancer (GC) is the third leading cause of cancer-related mortality and the fourth most prevalent malignancy globally. The high prevalence and mortality rates of GC are attributed to various factors, including drug resistance, local recurrence, and distant metastases. There is an urgent need to identify novel therapeutic targets for GC. Patient-derived xenografts (PDX) model offers unique advantages in maintaining the molecular heterogeneity and tumor microenvironment of primary tumors, offering significant advantages for the screening of personalized therapeutic targets. In this study, we established GC PDX models with metastatic potential through orthotopic transplantation and investigated the different gene expressions between primary and metastatic tumors using PCR-array analysis. We found that the metastatic tumors displayed elevated levels of FXYD domain-containing ion transport regulator 5 (FXYD5) compared to the primary tumors. Additionally, reducing FXYD5 expression was found to inhibit the invasion, metastasis, and proliferation of GC cells. Silencing FXYD5 also reversed the resistance of GC cells to doxorubicin and vincristine by modulating the epithelial–mesenchymal transition (EMT) process and the expression of multidrug resistance protein 2. This study indicates that FXYD5 is involved in GC progression and regulates chemotherapy resistance, suggesting its potential as a novel therapeutic target for the clinical treatment of GC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信