区域降阶建模在轮胎滚动仿真中的应用

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
D. Danan , R. Meunier , T. Dairay , T. Homolle , M. Yagoubi
{"title":"区域降阶建模在轮胎滚动仿真中的应用","authors":"D. Danan ,&nbsp;R. Meunier ,&nbsp;T. Dairay ,&nbsp;T. Homolle ,&nbsp;M. Yagoubi","doi":"10.1016/j.finel.2025.104330","DOIUrl":null,"url":null,"abstract":"<div><div>Physic-based simulation remains a key enabler for real-world ever-growing complex industrial systems especially when crucial decisions are needed. While classical approaches have proven their accuracy and robustness over the years and come with a rich mathematical foundation, they suffer from several limitations depending of the underlying physics and use cases. For instance, especially concerning the resolution of Partial Differential Equations (PDEs) in 3 dimensions (3D), classical approaches are known to be computationally expensive. However, it turns out that simple pure data-driven approaches, while allegedly much more efficient from a computational point of view, do not necessarily hold up well regarding physical considerations. In this work, our aim is to investigate the tradeoff between accuracy and computational cost to design efficient and robust physical simulation methods under industrial constraints. In particular, as it is not easy to generate a large dataset through numerical simulations for such a problem, our aim is to design an approach addressing the data scarcity issue. To do so, we propose to hybridize a standard Finite Element Method (FEM) physics-based solver with a zonal Reduced Order Model (ROM) approach to simulate a rolling tire.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"246 ","pages":"Article 104330"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of zonal Reduced-Order-Modeling to tire rolling simulation\",\"authors\":\"D. Danan ,&nbsp;R. Meunier ,&nbsp;T. Dairay ,&nbsp;T. Homolle ,&nbsp;M. Yagoubi\",\"doi\":\"10.1016/j.finel.2025.104330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Physic-based simulation remains a key enabler for real-world ever-growing complex industrial systems especially when crucial decisions are needed. While classical approaches have proven their accuracy and robustness over the years and come with a rich mathematical foundation, they suffer from several limitations depending of the underlying physics and use cases. For instance, especially concerning the resolution of Partial Differential Equations (PDEs) in 3 dimensions (3D), classical approaches are known to be computationally expensive. However, it turns out that simple pure data-driven approaches, while allegedly much more efficient from a computational point of view, do not necessarily hold up well regarding physical considerations. In this work, our aim is to investigate the tradeoff between accuracy and computational cost to design efficient and robust physical simulation methods under industrial constraints. In particular, as it is not easy to generate a large dataset through numerical simulations for such a problem, our aim is to design an approach addressing the data scarcity issue. To do so, we propose to hybridize a standard Finite Element Method (FEM) physics-based solver with a zonal Reduced Order Model (ROM) approach to simulate a rolling tire.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"246 \",\"pages\":\"Article 104330\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X25000198\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25000198","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于物理的仿真仍然是现实世界中不断增长的复杂工业系统的关键推动者,特别是当需要做出关键决策时。虽然经典方法多年来已经证明了它们的准确性和鲁棒性,并且具有丰富的数学基础,但它们受到一些限制,这取决于底层物理和用例。例如,特别是在三维(3D)的偏微分方程(PDEs)的分辨率方面,传统的方法被认为是计算昂贵的。然而,事实证明,简单的纯数据驱动的方法,虽然从计算的角度来看据称更有效,但并不一定能很好地考虑物理因素。在这项工作中,我们的目标是研究精度和计算成本之间的权衡,以设计在工业约束下高效且稳健的物理模拟方法。特别是,由于通过数值模拟生成大型数据集并不容易,因此我们的目标是设计一种解决数据稀缺性问题的方法。为此,我们建议将基于物理的标准有限元法(FEM)求解器与区域降阶模型(ROM)方法相结合,以模拟滚动轮胎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of zonal Reduced-Order-Modeling to tire rolling simulation
Physic-based simulation remains a key enabler for real-world ever-growing complex industrial systems especially when crucial decisions are needed. While classical approaches have proven their accuracy and robustness over the years and come with a rich mathematical foundation, they suffer from several limitations depending of the underlying physics and use cases. For instance, especially concerning the resolution of Partial Differential Equations (PDEs) in 3 dimensions (3D), classical approaches are known to be computationally expensive. However, it turns out that simple pure data-driven approaches, while allegedly much more efficient from a computational point of view, do not necessarily hold up well regarding physical considerations. In this work, our aim is to investigate the tradeoff between accuracy and computational cost to design efficient and robust physical simulation methods under industrial constraints. In particular, as it is not easy to generate a large dataset through numerical simulations for such a problem, our aim is to design an approach addressing the data scarcity issue. To do so, we propose to hybridize a standard Finite Element Method (FEM) physics-based solver with a zonal Reduced Order Model (ROM) approach to simulate a rolling tire.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信