水滴冲击到移动的亲水表面上的扩散特性

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Zhibing Zhu , Jinzu Yang , Shuai Yang , Xiaojing Sun , Xuan Zhang
{"title":"水滴冲击到移动的亲水表面上的扩散特性","authors":"Zhibing Zhu ,&nbsp;Jinzu Yang ,&nbsp;Shuai Yang ,&nbsp;Xiaojing Sun ,&nbsp;Xuan Zhang","doi":"10.1016/j.expthermflusci.2025.111449","DOIUrl":null,"url":null,"abstract":"<div><div>The impingement of water droplets onto solid moving surfaces is a ubiquitous phenomenon in nature and industry, making it fundamentally important to understand the droplet spreading dynamics. Here, the influence of surface movement on the asymmetric spreading characteristics of water droplets on horizontally moving hydrophilic surfaces is experimentally investigated. The spreading process and liquid film morphology, maximum spreading factor and time, and liquid film centroid are analyzed under different tangential moving and normal impact Weber numbers (i.e., <em>We</em><sub>t</sub> and <em>We</em><sub>n</sub>). In the moving direction, the spreading is stretched by the surface movement, increasing the maximum spreading diameter. Ellipse and tail patterns are observed in the regions of <em>We</em><sub>t</sub> &lt; 0.72<em>We</em><sub>n</sub> and <em>We</em><sub>t</sub> &gt; 0.72<em>We</em><sub>n</sub>. For both patterns, the ratios of the maximum spreading factor in the moving direction to that perpendicular to the moving direction could be expressed as functions of <span><math><mrow><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>t</mtext></mrow><mrow><mn>0.5</mn></mrow></msubsup><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>n</mtext></mrow><mrow><mo>-</mo><mn>0.5</mn></mrow></msubsup></mrow></math></span>. The spreading time perpendicular to the moving direction is reduced by the surface movement and this reduction is normalized by a modified correlation. The liquid film centroid travels slower than the moving surface in the early stage and travels as fast as the moving surface in the final stage. The relative displacement of the liquid film centroid can be scaled as <span><math><mrow><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>t</mtext></mrow><mrow><mn>0.5</mn></mrow></msubsup><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>n</mtext></mrow><mrow><mo>-</mo><mn>0.5</mn></mrow></msubsup></mrow></math></span>. This study deepens our understanding of the droplet impact behaviors on moving surfaces and the findings help analyze the dynamics on more compilated moving surfaces.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"165 ","pages":"Article 111449"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spreading characteristics of water droplets impacting onto a moving hydrophilic surface\",\"authors\":\"Zhibing Zhu ,&nbsp;Jinzu Yang ,&nbsp;Shuai Yang ,&nbsp;Xiaojing Sun ,&nbsp;Xuan Zhang\",\"doi\":\"10.1016/j.expthermflusci.2025.111449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The impingement of water droplets onto solid moving surfaces is a ubiquitous phenomenon in nature and industry, making it fundamentally important to understand the droplet spreading dynamics. Here, the influence of surface movement on the asymmetric spreading characteristics of water droplets on horizontally moving hydrophilic surfaces is experimentally investigated. The spreading process and liquid film morphology, maximum spreading factor and time, and liquid film centroid are analyzed under different tangential moving and normal impact Weber numbers (i.e., <em>We</em><sub>t</sub> and <em>We</em><sub>n</sub>). In the moving direction, the spreading is stretched by the surface movement, increasing the maximum spreading diameter. Ellipse and tail patterns are observed in the regions of <em>We</em><sub>t</sub> &lt; 0.72<em>We</em><sub>n</sub> and <em>We</em><sub>t</sub> &gt; 0.72<em>We</em><sub>n</sub>. For both patterns, the ratios of the maximum spreading factor in the moving direction to that perpendicular to the moving direction could be expressed as functions of <span><math><mrow><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>t</mtext></mrow><mrow><mn>0.5</mn></mrow></msubsup><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>n</mtext></mrow><mrow><mo>-</mo><mn>0.5</mn></mrow></msubsup></mrow></math></span>. The spreading time perpendicular to the moving direction is reduced by the surface movement and this reduction is normalized by a modified correlation. The liquid film centroid travels slower than the moving surface in the early stage and travels as fast as the moving surface in the final stage. The relative displacement of the liquid film centroid can be scaled as <span><math><mrow><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>t</mtext></mrow><mrow><mn>0.5</mn></mrow></msubsup><mi>W</mi><msubsup><mi>e</mi><mrow><mtext>n</mtext></mrow><mrow><mo>-</mo><mn>0.5</mn></mrow></msubsup></mrow></math></span>. This study deepens our understanding of the droplet impact behaviors on moving surfaces and the findings help analyze the dynamics on more compilated moving surfaces.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"165 \",\"pages\":\"Article 111449\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177725000433\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725000433","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

水滴撞击固体运动表面是自然界和工业中普遍存在的现象,因此了解液滴扩散动力学非常重要。本文通过实验研究了表面运动对水滴在水平运动的亲水表面上不对称扩散特性的影响。分析了不同切向运动和法向冲击韦伯数(即Wet和Wen)下的扩散过程和液膜形态、最大扩散因子和时间以及液膜质心。在运动方向上,扩散受到地表运动的拉伸,最大扩散直径增大。在Wet <区域观察到椭圆和尾部图案;0.72温湿;0.72温。对于两种模式,移动方向的最大扩散系数与垂直于移动方向的最大扩散系数之比可以表示为we0.5 wen -0.5的函数。垂直于移动方向的传播时间因地表移动而减少,这种减少通过修正的相关性进行归一化。液膜质心在初期的运动速度比运动表面慢,在后期的运动速度与运动表面一样快。液膜质心的相对位移可标为we0.5 wen -0.5。该研究加深了我们对液滴在运动表面上的碰撞行为的理解,并有助于分析更多编译的运动表面上的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spreading characteristics of water droplets impacting onto a moving hydrophilic surface

Spreading characteristics of water droplets impacting onto a moving hydrophilic surface
The impingement of water droplets onto solid moving surfaces is a ubiquitous phenomenon in nature and industry, making it fundamentally important to understand the droplet spreading dynamics. Here, the influence of surface movement on the asymmetric spreading characteristics of water droplets on horizontally moving hydrophilic surfaces is experimentally investigated. The spreading process and liquid film morphology, maximum spreading factor and time, and liquid film centroid are analyzed under different tangential moving and normal impact Weber numbers (i.e., Wet and Wen). In the moving direction, the spreading is stretched by the surface movement, increasing the maximum spreading diameter. Ellipse and tail patterns are observed in the regions of Wet < 0.72Wen and Wet > 0.72Wen. For both patterns, the ratios of the maximum spreading factor in the moving direction to that perpendicular to the moving direction could be expressed as functions of Wet0.5Wen-0.5. The spreading time perpendicular to the moving direction is reduced by the surface movement and this reduction is normalized by a modified correlation. The liquid film centroid travels slower than the moving surface in the early stage and travels as fast as the moving surface in the final stage. The relative displacement of the liquid film centroid can be scaled as Wet0.5Wen-0.5. This study deepens our understanding of the droplet impact behaviors on moving surfaces and the findings help analyze the dynamics on more compilated moving surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信