{"title":"ICASSP 2024 音频深度丢包隐蔽大挑战","authors":"Lorenz Diener;Solomiya Branets;Ando Saabas;Ross Cutler","doi":"10.1109/OJSP.2025.3526552","DOIUrl":null,"url":null,"abstract":"Audio packet loss concealment hides gaps in VoIP audio streams caused by network packet loss. It operates in real-time with low computational requirements and latency, as demanded by modern communication systems. With the ICASSP 2024 Audio Deep Packet Loss Concealment Grand Challenge, we build on the success of the previous Audio PLC Challenge held at INTERSPEECH 2022. For the 2024 challenge at ICASSP, we update the challenge by introducing an overall harder blind evaluation set and extending the task from wideband to fullband audio, in keeping with current trends in internet telephony. In addition to the Word Accuracy metric, we also use a questionnaire based on an extension of ITU-T P.804 to more closely evaluate the performance of systems specifically on the PLC task. We evaluate a total of 9 systems submitted by different academic and industry teams, 8 of which satisfy the strict real-time performance requirements of the challenge, using both P.804 and Word Accuracy evaluations. Two systems share first place, with one of the systems having the advantage in terms of naturalness, while the other wins in terms of intelligibility. These systems are the current state of the art for Deep PLC.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"231-237"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10830479","citationCount":"0","resultStr":"{\"title\":\"The ICASSP 2024 Audio Deep Packet Loss Concealment Grand Challenge\",\"authors\":\"Lorenz Diener;Solomiya Branets;Ando Saabas;Ross Cutler\",\"doi\":\"10.1109/OJSP.2025.3526552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio packet loss concealment hides gaps in VoIP audio streams caused by network packet loss. It operates in real-time with low computational requirements and latency, as demanded by modern communication systems. With the ICASSP 2024 Audio Deep Packet Loss Concealment Grand Challenge, we build on the success of the previous Audio PLC Challenge held at INTERSPEECH 2022. For the 2024 challenge at ICASSP, we update the challenge by introducing an overall harder blind evaluation set and extending the task from wideband to fullband audio, in keeping with current trends in internet telephony. In addition to the Word Accuracy metric, we also use a questionnaire based on an extension of ITU-T P.804 to more closely evaluate the performance of systems specifically on the PLC task. We evaluate a total of 9 systems submitted by different academic and industry teams, 8 of which satisfy the strict real-time performance requirements of the challenge, using both P.804 and Word Accuracy evaluations. Two systems share first place, with one of the systems having the advantage in terms of naturalness, while the other wins in terms of intelligibility. These systems are the current state of the art for Deep PLC.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"231-237\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10830479\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10830479/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10830479/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The ICASSP 2024 Audio Deep Packet Loss Concealment Grand Challenge
Audio packet loss concealment hides gaps in VoIP audio streams caused by network packet loss. It operates in real-time with low computational requirements and latency, as demanded by modern communication systems. With the ICASSP 2024 Audio Deep Packet Loss Concealment Grand Challenge, we build on the success of the previous Audio PLC Challenge held at INTERSPEECH 2022. For the 2024 challenge at ICASSP, we update the challenge by introducing an overall harder blind evaluation set and extending the task from wideband to fullband audio, in keeping with current trends in internet telephony. In addition to the Word Accuracy metric, we also use a questionnaire based on an extension of ITU-T P.804 to more closely evaluate the performance of systems specifically on the PLC task. We evaluate a total of 9 systems submitted by different academic and industry teams, 8 of which satisfy the strict real-time performance requirements of the challenge, using both P.804 and Word Accuracy evaluations. Two systems share first place, with one of the systems having the advantage in terms of naturalness, while the other wins in terms of intelligibility. These systems are the current state of the art for Deep PLC.