水动力反点石墨烯超晶格中的超弹道传导

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jorge Estrada-Álvarez, Juan Salvador-Sánchez, Ana Pérez-Rodríguez, Carlos Sánchez-Sánchez, Vito Clericò, Daniel Vaquero, Kenji Watanabe, Takashi Taniguchi, Enrique Diez, Francisco Domínguez-Adame, Mario Amado, Elena Díaz
{"title":"水动力反点石墨烯超晶格中的超弹道传导","authors":"Jorge Estrada-Álvarez, Juan Salvador-Sánchez, Ana Pérez-Rodríguez, Carlos Sánchez-Sánchez, Vito Clericò, Daniel Vaquero, Kenji Watanabe, Takashi Taniguchi, Enrique Diez, Francisco Domínguez-Adame, Mario Amado, Elena Díaz","doi":"10.1103/physrevx.15.011039","DOIUrl":null,"url":null,"abstract":"Viscous electron flow exhibits exotic signatures such as superballistic conduction. In order to observe hydrodynamics effects, a 2D device where the current flow is as inhomogeneous as possible is desirable. To this end, we build three antidot graphene superlattices with different hole diameters. We measure their electrical properties at various temperatures and under the effect of a perpendicular magnetic field. We find an enhanced superballistic effect, suggesting the effectiveness of the geometry at bending the electron flow. In addition, superballistic conduction, which is related to a transition from a noncollective to a collective regime of transport, behaves nonmonotonically with the magnetic field. We also analyze the device resistance as a function of the size of the antidot superlattice to find characteristic scaling laws describing the different transport regimes. We prove that the antidot superlattice is a convenient geometry for realizing hydrodynamic flow and provide valuable explanations for the technologically relevant effects of superballistic conduction and scaling laws. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"15 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superballistic Conduction in Hydrodynamic Antidot Graphene Superlattices\",\"authors\":\"Jorge Estrada-Álvarez, Juan Salvador-Sánchez, Ana Pérez-Rodríguez, Carlos Sánchez-Sánchez, Vito Clericò, Daniel Vaquero, Kenji Watanabe, Takashi Taniguchi, Enrique Diez, Francisco Domínguez-Adame, Mario Amado, Elena Díaz\",\"doi\":\"10.1103/physrevx.15.011039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viscous electron flow exhibits exotic signatures such as superballistic conduction. In order to observe hydrodynamics effects, a 2D device where the current flow is as inhomogeneous as possible is desirable. To this end, we build three antidot graphene superlattices with different hole diameters. We measure their electrical properties at various temperatures and under the effect of a perpendicular magnetic field. We find an enhanced superballistic effect, suggesting the effectiveness of the geometry at bending the electron flow. In addition, superballistic conduction, which is related to a transition from a noncollective to a collective regime of transport, behaves nonmonotonically with the magnetic field. We also analyze the device resistance as a function of the size of the antidot superlattice to find characteristic scaling laws describing the different transport regimes. We prove that the antidot superlattice is a convenient geometry for realizing hydrodynamic flow and provide valuable explanations for the technologically relevant effects of superballistic conduction and scaling laws. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.011039\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011039","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

粘性电子流表现出奇异的特征,如超弹道传导。为了观察流体力学效应,需要一个二维装置,其中电流流动尽可能不均匀。为此,我们构建了三个不同孔径的反点石墨烯超晶格。我们测量了它们在不同温度和垂直磁场作用下的电性能。我们发现了一个增强的超弹道效应,表明几何形状在弯曲电子流方面的有效性。此外,与非集体输运向集体输运转变有关的超弹道传导随磁场的变化表现出非单调性。我们还分析了器件电阻作为反点超晶格大小的函数,以找到描述不同输运机制的特征标度定律。我们证明了反点超晶格是实现流体动力流动的一种方便的几何形式,并为超弹道传导和标度定律的技术相关效应提供了有价值的解释。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superballistic Conduction in Hydrodynamic Antidot Graphene Superlattices
Viscous electron flow exhibits exotic signatures such as superballistic conduction. In order to observe hydrodynamics effects, a 2D device where the current flow is as inhomogeneous as possible is desirable. To this end, we build three antidot graphene superlattices with different hole diameters. We measure their electrical properties at various temperatures and under the effect of a perpendicular magnetic field. We find an enhanced superballistic effect, suggesting the effectiveness of the geometry at bending the electron flow. In addition, superballistic conduction, which is related to a transition from a noncollective to a collective regime of transport, behaves nonmonotonically with the magnetic field. We also analyze the device resistance as a function of the size of the antidot superlattice to find characteristic scaling laws describing the different transport regimes. We prove that the antidot superlattice is a convenient geometry for realizing hydrodynamic flow and provide valuable explanations for the technologically relevant effects of superballistic conduction and scaling laws. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信