Francisco J. S. A. Corrêa, César E. T. Ledesma, Alânnio B. Nóbrega
{"title":"具有非线性振荡的分数阶椭圆方程的正解","authors":"Francisco J. S. A. Corrêa, César E. T. Ledesma, Alânnio B. Nóbrega","doi":"10.1007/s13540-025-00379-4","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the existence and multiplicity of positive solutions to the following semilinear problem: </p><p> where <span>\\(f\\in C([0,\\infty ),{\\mathbb {R}})\\)</span> represents an oscillating nonlinearity that satisfies a type of area condition. Our main analytical tools include variational methods and the sub-supersolution method.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On positive solutions of fractional elliptic equations with oscillating nonlinearity\",\"authors\":\"Francisco J. S. A. Corrêa, César E. T. Ledesma, Alânnio B. Nóbrega\",\"doi\":\"10.1007/s13540-025-00379-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the existence and multiplicity of positive solutions to the following semilinear problem: </p><p> where <span>\\\\(f\\\\in C([0,\\\\infty ),{\\\\mathbb {R}})\\\\)</span> represents an oscillating nonlinearity that satisfies a type of area condition. Our main analytical tools include variational methods and the sub-supersolution method.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00379-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00379-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On positive solutions of fractional elliptic equations with oscillating nonlinearity
This paper investigates the existence and multiplicity of positive solutions to the following semilinear problem:
where \(f\in C([0,\infty ),{\mathbb {R}})\) represents an oscillating nonlinearity that satisfies a type of area condition. Our main analytical tools include variational methods and the sub-supersolution method.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.