Zena Lapp, Hyejin Yoon, Brian Foley, Thomas Leitner
{"title":"Hypermut 3:在允许多状态字符的已定义核苷酸上下文中识别特定的突变模式。","authors":"Zena Lapp, Hyejin Yoon, Brian Foley, Thomas Leitner","doi":"10.1093/bioadv/vbaf025","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The detection of APOBEC3F- and APOBEC3G-induced mutations in virus sequences is useful for identifying hypermutated sequences. These sequences are not representative of viral evolution and can therefore alter the results of downstream sequence analyses if included. We previously published the software Hypermut, which detects hypermutation events in sequences relative to a reference. Two versions of this method are available as a webtool. Neither of these methods consider multistate characters or gaps in the sequence alignment.</p><p><strong>Results: </strong>Here, we present an updated, user-friendly web and command-line version of Hypermut with functionality to handle multistate characters and gaps in the sequence alignment. This tool allows for straightforward integration of hypermutation detection into sequence analysis pipelines. As with the previous tool, while the main purpose is to identify G to A hypermutation events, any mutational pattern and context can be specified.</p><p><strong>Availability and implementation: </strong>Hypermut 3 is written in Python 3. It is available as a command-line tool at https://github.com/MolEvolEpid/hypermut3 and as a webtool at https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf025"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842049/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypermut 3: identifying specific mutational patterns in a defined nucleotide context that allows multistate characters.\",\"authors\":\"Zena Lapp, Hyejin Yoon, Brian Foley, Thomas Leitner\",\"doi\":\"10.1093/bioadv/vbaf025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The detection of APOBEC3F- and APOBEC3G-induced mutations in virus sequences is useful for identifying hypermutated sequences. These sequences are not representative of viral evolution and can therefore alter the results of downstream sequence analyses if included. We previously published the software Hypermut, which detects hypermutation events in sequences relative to a reference. Two versions of this method are available as a webtool. Neither of these methods consider multistate characters or gaps in the sequence alignment.</p><p><strong>Results: </strong>Here, we present an updated, user-friendly web and command-line version of Hypermut with functionality to handle multistate characters and gaps in the sequence alignment. This tool allows for straightforward integration of hypermutation detection into sequence analysis pipelines. As with the previous tool, while the main purpose is to identify G to A hypermutation events, any mutational pattern and context can be specified.</p><p><strong>Availability and implementation: </strong>Hypermut 3 is written in Python 3. It is available as a command-line tool at https://github.com/MolEvolEpid/hypermut3 and as a webtool at https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf025\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842049/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Hypermut 3: identifying specific mutational patterns in a defined nucleotide context that allows multistate characters.
Motivation: The detection of APOBEC3F- and APOBEC3G-induced mutations in virus sequences is useful for identifying hypermutated sequences. These sequences are not representative of viral evolution and can therefore alter the results of downstream sequence analyses if included. We previously published the software Hypermut, which detects hypermutation events in sequences relative to a reference. Two versions of this method are available as a webtool. Neither of these methods consider multistate characters or gaps in the sequence alignment.
Results: Here, we present an updated, user-friendly web and command-line version of Hypermut with functionality to handle multistate characters and gaps in the sequence alignment. This tool allows for straightforward integration of hypermutation detection into sequence analysis pipelines. As with the previous tool, while the main purpose is to identify G to A hypermutation events, any mutational pattern and context can be specified.
Availability and implementation: Hypermut 3 is written in Python 3. It is available as a command-line tool at https://github.com/MolEvolEpid/hypermut3 and as a webtool at https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html.