IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-02-01 Epub Date: 2025-02-20 DOI:10.1200/CCI-24-00198
David S Smith, Levente Lippenszky, Michele L LeNoue-Newton, Neha M Jain, Kathleen F Mittendorf, Christine M Micheel, Patrick A Cella, Jan Wolber, Travis J Osterman
{"title":"Radiomics and Deep Learning Prediction of Immunotherapy-Induced Pneumonitis From Computed Tomography.","authors":"David S Smith, Levente Lippenszky, Michele L LeNoue-Newton, Neha M Jain, Kathleen F Mittendorf, Christine M Micheel, Patrick A Cella, Jan Wolber, Travis J Osterman","doi":"10.1200/CCI-24-00198","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Primary barriers to application of immune checkpoint inhibitor (ICI) therapy for cancer include severe side effects (such as potentially life threatening pneumonitis [PN]), which can cause the discontinuation of treatment. Predicting which patients may develop PN while on ICI would improve both safety and potential efficacy because treatments could be safely administered for longer or discontinued before severe toxicity.</p><p><strong>Methods: </strong>Starting from a cohort of 3,351 patients with cancer who received previous ICI therapy at the Vanderbilt University Medical Center, we curated 2,700 contrast chest computed tomography (CT) volumes for 671 patients. Three different pure imaging models predicted the potential for PN using only a single time point before the first ICI dose.</p><p><strong>Results: </strong>The first model used 109 radiomics features only and achieved an AUC of 0.747 (CI, 0.705 to 0.789) with a positive predictive value (PPV) of 0.244 (CI, 0.211 to 0.276) at a sensitivity of 0.553 (CI, 0.485 to 0.621) using mainly features describing the global lung properties. The second model used a convolutional neural network (CNN) on the raw CTs to improve to an AUC of 0.819 (CI, 0.781 to 0.857) with a PPV of 0.244 (CI, 0.203 to 0.284) at a sensitivity of 0.743 (CI, 0.681 to 0.806). The third model combined both radiomics and deep learning but, with an AUC of 0.829 (CI, 0.797 to 0.862) and a PPV of 0.254 (CI, 0.228 to 0.281) at a sensitivity of 0.780 (CI, 0.721 to 0.840), did not show a significant improvement on the CNN-only model.</p><p><strong>Conclusion: </strong>This new model suggests the utility of deep learning in PN prediction over traditional pure radiomics and promises better management for patients receiving ICI and the ability to better stratify patients in immunotherapy drug trials.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400198"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:应用免疫检查点抑制剂(ICI)治疗癌症的主要障碍包括严重的副作用(如可能危及生命的肺炎[PN]),这些副作用可能导致治疗中断。预测哪些患者在接受 ICI 治疗时可能会出现肺炎,将提高安全性和潜在疗效,因为在出现严重毒性之前,可以安全地延长治疗时间或停止治疗:我们从范德比尔特大学医学中心曾接受过 ICI 治疗的 3,351 名癌症患者的队列开始,对 671 名患者的 2,700 张对比胸部计算机断层扫描 (CT) 图像进行了整理。三个不同的纯成像模型仅使用首次 ICI 剂量前的一个时间点来预测 PN 的可能性:第一个模型仅使用了 109 个放射组学特征,其 AUC 为 0.747(CI,0.705 至 0.789),阳性预测值 (PPV) 为 0.244(CI,0.211 至 0.276),灵敏度为 0.553(CI,0.485 至 0.621)。第二个模型在原始 CT 上使用卷积神经网络 (CNN),其 AUC 为 0.819(CI 为 0.781 至 0.857),PPV 为 0.244(CI 为 0.203 至 0.284),灵敏度为 0.743(CI 为 0.681 至 0.806)。第三个模型结合了放射组学和深度学习,但其 AUC 为 0.829(CI,0.797 至 0.862),PPV 为 0.254(CI,0.228 至 0.281),灵敏度为 0.780(CI,0.721 至 0.840),与纯 CNN 模型相比没有明显改善:这个新模型表明,与传统的纯放射组学相比,深度学习在 PN 预测中具有实用性,有望更好地管理接受 ICI 治疗的患者,并能在免疫疗法药物试验中更好地对患者进行分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics and Deep Learning Prediction of Immunotherapy-Induced Pneumonitis From Computed Tomography.

Purpose: Primary barriers to application of immune checkpoint inhibitor (ICI) therapy for cancer include severe side effects (such as potentially life threatening pneumonitis [PN]), which can cause the discontinuation of treatment. Predicting which patients may develop PN while on ICI would improve both safety and potential efficacy because treatments could be safely administered for longer or discontinued before severe toxicity.

Methods: Starting from a cohort of 3,351 patients with cancer who received previous ICI therapy at the Vanderbilt University Medical Center, we curated 2,700 contrast chest computed tomography (CT) volumes for 671 patients. Three different pure imaging models predicted the potential for PN using only a single time point before the first ICI dose.

Results: The first model used 109 radiomics features only and achieved an AUC of 0.747 (CI, 0.705 to 0.789) with a positive predictive value (PPV) of 0.244 (CI, 0.211 to 0.276) at a sensitivity of 0.553 (CI, 0.485 to 0.621) using mainly features describing the global lung properties. The second model used a convolutional neural network (CNN) on the raw CTs to improve to an AUC of 0.819 (CI, 0.781 to 0.857) with a PPV of 0.244 (CI, 0.203 to 0.284) at a sensitivity of 0.743 (CI, 0.681 to 0.806). The third model combined both radiomics and deep learning but, with an AUC of 0.829 (CI, 0.797 to 0.862) and a PPV of 0.254 (CI, 0.228 to 0.281) at a sensitivity of 0.780 (CI, 0.721 to 0.840), did not show a significant improvement on the CNN-only model.

Conclusion: This new model suggests the utility of deep learning in PN prediction over traditional pure radiomics and promises better management for patients receiving ICI and the ability to better stratify patients in immunotherapy drug trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信