o6 -甲基鸟嘌呤- dna甲基转移酶启动子CpG岛的单分子纳米孔测序为富G/ c区从头甲基化机制提供了新的见解。

IF 2.5 Q3 GENETICS & HEREDITY
Alexander V Sergeev, Daniil P Malyshev, Adelya I Genatullina, Galina V Pavlova, Elizaveta S Gromova, Maria I Zvereva
{"title":"o6 -甲基鸟嘌呤- dna甲基转移酶启动子CpG岛的单分子纳米孔测序为富G/ c区从头甲基化机制提供了新的见解。","authors":"Alexander V Sergeev, Daniil P Malyshev, Adelya I Genatullina, Galina V Pavlova, Elizaveta S Gromova, Maria I Zvereva","doi":"10.3390/epigenomes9010004","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The methylation of cytosine residues at CpG sites within the O6-methylguanine-DNA methyltransferase (<i>MGMT</i>) promoter is a key biomarker in glioblastoma therapy. The <i>MGMT</i> promoter (MGMTp) contains multiple guanine-rich sequences capable of folding into G-quadruplexes (G4s), but their relevance for MGMTp methylation is poorly understood.</p><p><strong>Objectives: </strong>Our study explores the impact of potential G-quadruplex-forming sequences (PQS) in the <i>MGMT</i> promoter CpG island on the activity of de novo DNA methyltransferase Dnmt3a. Additionally, we investigate their influence on the accuracy of methylation pattern detection using nanopore sequencing.</p><p><strong>Methods: </strong>Nanopore sequencing was employed to analyze the methylation of 94 clinically significant CpG sites in the human MGMTp using an in vitro de novo methylation system. Circular dichroism spectroscopy was used to identify G4 structures within the MGMTp CpG island. Interactions between the catalytic domain of Dnmt3a and the PQS from the MGMTp were examined by biolayer interferometry.</p><p><strong>Results: </strong>Guanine-rich DNA strands of the PQSs in the MGMTp were hypomethylated, while the complementary cytosine-rich strands were methylated by DNA methyltransferase Dnmt3a with higher efficiency. The accuracy of detecting modified bases in the PQS was significantly lower compared to surrounding sequences. Single-stranded guanine-rich DNA sequences from the MGMTp exhibited strong binding to Dnmt3a-CD, with an affinity approximately 10 times higher than their cytosine-rich complements (<i>K</i><sub>d</sub> = 3 × 10<sup>-8</sup> M and 3 × 10<sup>-7</sup> M, respectively). By binding to Dnmt3a, G4-forming oligonucleotides from MGMTp effectively inhibited the methylation reaction (IC<sub>50</sub> 6 × 10<sup>-7</sup> M).</p><p><strong>Conclusions: </strong>The obtained data indicate the role of PQSs in establishing de novo methylation of the <i>MGMT</i> promoter. They also highlight the challenges of sequencing guanine-rich regions and the impact of specific de novo methylation patterns on clinical data interpretation.</p>","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":"9 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843895/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-Molecule Nanopore Sequencing of the CpG Island from the Promoter of O6-Methylguanine-DNA Methyltransferase Provides Insights into the Mechanism of De Novo Methylation of G/C-Rich Regions.\",\"authors\":\"Alexander V Sergeev, Daniil P Malyshev, Adelya I Genatullina, Galina V Pavlova, Elizaveta S Gromova, Maria I Zvereva\",\"doi\":\"10.3390/epigenomes9010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The methylation of cytosine residues at CpG sites within the O6-methylguanine-DNA methyltransferase (<i>MGMT</i>) promoter is a key biomarker in glioblastoma therapy. The <i>MGMT</i> promoter (MGMTp) contains multiple guanine-rich sequences capable of folding into G-quadruplexes (G4s), but their relevance for MGMTp methylation is poorly understood.</p><p><strong>Objectives: </strong>Our study explores the impact of potential G-quadruplex-forming sequences (PQS) in the <i>MGMT</i> promoter CpG island on the activity of de novo DNA methyltransferase Dnmt3a. Additionally, we investigate their influence on the accuracy of methylation pattern detection using nanopore sequencing.</p><p><strong>Methods: </strong>Nanopore sequencing was employed to analyze the methylation of 94 clinically significant CpG sites in the human MGMTp using an in vitro de novo methylation system. Circular dichroism spectroscopy was used to identify G4 structures within the MGMTp CpG island. Interactions between the catalytic domain of Dnmt3a and the PQS from the MGMTp were examined by biolayer interferometry.</p><p><strong>Results: </strong>Guanine-rich DNA strands of the PQSs in the MGMTp were hypomethylated, while the complementary cytosine-rich strands were methylated by DNA methyltransferase Dnmt3a with higher efficiency. The accuracy of detecting modified bases in the PQS was significantly lower compared to surrounding sequences. Single-stranded guanine-rich DNA sequences from the MGMTp exhibited strong binding to Dnmt3a-CD, with an affinity approximately 10 times higher than their cytosine-rich complements (<i>K</i><sub>d</sub> = 3 × 10<sup>-8</sup> M and 3 × 10<sup>-7</sup> M, respectively). By binding to Dnmt3a, G4-forming oligonucleotides from MGMTp effectively inhibited the methylation reaction (IC<sub>50</sub> 6 × 10<sup>-7</sup> M).</p><p><strong>Conclusions: </strong>The obtained data indicate the role of PQSs in establishing de novo methylation of the <i>MGMT</i> promoter. They also highlight the challenges of sequencing guanine-rich regions and the impact of specific de novo methylation patterns on clinical data interpretation.</p>\",\"PeriodicalId\":55768,\"journal\":{\"name\":\"Epigenomes\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843895/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/epigenomes9010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes9010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:o6 -甲基鸟嘌呤- dna甲基转移酶(MGMT)启动子CpG位点胞嘧啶残基的甲基化是胶质母细胞瘤治疗中的关键生物标志物。MGMT启动子(MGMTp)包含多个富含鸟嘌呤的序列,能够折叠成g -四联体(G4s),但它们与MGMTp甲基化的相关性尚不清楚。目的:本研究探讨MGMT启动子CpG岛中潜在g -四重体形成序列(PQS)对新生DNA甲基转移酶Dnmt3a活性的影响。此外,我们还研究了它们对纳米孔测序甲基化模式检测准确性的影响。方法:采用体外从头甲基化系统,采用纳米孔测序技术分析人MGMTp中94个具有临床意义的CpG位点的甲基化。利用圆二色光谱对MGMTp CpG岛内的G4结构进行了鉴定。通过生物层干涉法检测Dnmt3a的催化结构域与MGMTp的PQS之间的相互作用。结果:MGMTp中富含鸟嘌呤的PQSs DNA链被低甲基化,而互补的富含胞嘧啶的DNA链被DNA甲基转移酶Dnmt3a甲基化效率更高。与周围序列相比,PQS中修饰碱基的检测精度显著降低。来自MGMTp的单链富含鸟嘌呤的DNA序列与Dnmt3a-CD表现出很强的结合,其亲和力大约是其富含胞嘧啶的互补体的10倍(Kd分别为3 × 10-8 M和3 × 10-7 M)。通过与Dnmt3a结合,MGMTp形成g4的寡核苷酸有效抑制了甲基化反应(IC50为6 × 10-7 M)。结论:得到的数据表明PQSs在建立MGMT启动子从头甲基化中的作用。他们还强调了测序富鸟嘌呤区域的挑战以及特定从头甲基化模式对临床数据解释的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Molecule Nanopore Sequencing of the CpG Island from the Promoter of O6-Methylguanine-DNA Methyltransferase Provides Insights into the Mechanism of De Novo Methylation of G/C-Rich Regions.

Background: The methylation of cytosine residues at CpG sites within the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a key biomarker in glioblastoma therapy. The MGMT promoter (MGMTp) contains multiple guanine-rich sequences capable of folding into G-quadruplexes (G4s), but their relevance for MGMTp methylation is poorly understood.

Objectives: Our study explores the impact of potential G-quadruplex-forming sequences (PQS) in the MGMT promoter CpG island on the activity of de novo DNA methyltransferase Dnmt3a. Additionally, we investigate their influence on the accuracy of methylation pattern detection using nanopore sequencing.

Methods: Nanopore sequencing was employed to analyze the methylation of 94 clinically significant CpG sites in the human MGMTp using an in vitro de novo methylation system. Circular dichroism spectroscopy was used to identify G4 structures within the MGMTp CpG island. Interactions between the catalytic domain of Dnmt3a and the PQS from the MGMTp were examined by biolayer interferometry.

Results: Guanine-rich DNA strands of the PQSs in the MGMTp were hypomethylated, while the complementary cytosine-rich strands were methylated by DNA methyltransferase Dnmt3a with higher efficiency. The accuracy of detecting modified bases in the PQS was significantly lower compared to surrounding sequences. Single-stranded guanine-rich DNA sequences from the MGMTp exhibited strong binding to Dnmt3a-CD, with an affinity approximately 10 times higher than their cytosine-rich complements (Kd = 3 × 10-8 M and 3 × 10-7 M, respectively). By binding to Dnmt3a, G4-forming oligonucleotides from MGMTp effectively inhibited the methylation reaction (IC50 6 × 10-7 M).

Conclusions: The obtained data indicate the role of PQSs in establishing de novo methylation of the MGMT promoter. They also highlight the challenges of sequencing guanine-rich regions and the impact of specific de novo methylation patterns on clinical data interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenomes
Epigenomes GENETICS & HEREDITY-
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信