低正则性中长波方程的无条件深水极限。

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Justin Forlano, Guopeng Li, Tengfei Zhao
{"title":"低正则性中长波方程的无条件深水极限。","authors":"Justin Forlano, Guopeng Li, Tengfei Zhao","doi":"10.1007/s00030-025-01037-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we establish the unconditional deep-water limit of the intermediate long wave equation (ILW) to the Benjamin-Ono equation (BO) in low-regularity Sobolev spaces on both the real line and the circle. Our main tool is new unconditional uniqueness results for ILW in <math><msup><mi>H</mi> <mi>s</mi></msup> </math> when <math> <mrow><msub><mi>s</mi> <mn>0</mn></msub> <mo><</mo> <mi>s</mi> <mo>≤</mo> <mfrac><mn>1</mn> <mn>4</mn></mfrac> </mrow> </math> on the line and <math> <mrow><msub><mi>s</mi> <mn>0</mn></msub> <mo><</mo> <mi>s</mi> <mo><</mo> <mfrac><mn>1</mn> <mn>2</mn></mfrac> </mrow> </math> on the circle, where <math> <mrow><msub><mi>s</mi> <mn>0</mn></msub> <mo>=</mo> <mn>3</mn> <mo>-</mo> <msqrt><mrow><mn>33</mn> <mo>/</mo> <mn>4</mn></mrow> </msqrt> <mo>≈</mo> <mn>0.1277</mn></mrow> </math> . Here, we adapt the strategy of Moşincat-Pilod (Pure Appl Anal 5:285-322, 2023) for BO to the setting of ILW by viewing ILW as a perturbation of BO and making use of the smoothing property of the perturbation term.</p>","PeriodicalId":49747,"journal":{"name":"Nodea-Nonlinear Differential Equations and Applications","volume":"32 2","pages":"28"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836242/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unconditional deep-water limit of the intermediate long wave equation in low-regularity.\",\"authors\":\"Justin Forlano, Guopeng Li, Tengfei Zhao\",\"doi\":\"10.1007/s00030-025-01037-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we establish the unconditional deep-water limit of the intermediate long wave equation (ILW) to the Benjamin-Ono equation (BO) in low-regularity Sobolev spaces on both the real line and the circle. Our main tool is new unconditional uniqueness results for ILW in <math><msup><mi>H</mi> <mi>s</mi></msup> </math> when <math> <mrow><msub><mi>s</mi> <mn>0</mn></msub> <mo><</mo> <mi>s</mi> <mo>≤</mo> <mfrac><mn>1</mn> <mn>4</mn></mfrac> </mrow> </math> on the line and <math> <mrow><msub><mi>s</mi> <mn>0</mn></msub> <mo><</mo> <mi>s</mi> <mo><</mo> <mfrac><mn>1</mn> <mn>2</mn></mfrac> </mrow> </math> on the circle, where <math> <mrow><msub><mi>s</mi> <mn>0</mn></msub> <mo>=</mo> <mn>3</mn> <mo>-</mo> <msqrt><mrow><mn>33</mn> <mo>/</mo> <mn>4</mn></mrow> </msqrt> <mo>≈</mo> <mn>0.1277</mn></mrow> </math> . Here, we adapt the strategy of Moşincat-Pilod (Pure Appl Anal 5:285-322, 2023) for BO to the setting of ILW by viewing ILW as a perturbation of BO and making use of the smoothing property of the perturbation term.</p>\",\"PeriodicalId\":49747,\"journal\":{\"name\":\"Nodea-Nonlinear Differential Equations and Applications\",\"volume\":\"32 2\",\"pages\":\"28\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nodea-Nonlinear Differential Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-025-01037-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nodea-Nonlinear Differential Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00030-025-01037-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了低正则Sobolev空间实线和圆上的Benjamin-Ono方程的中间长波方程(ILW)的无条件深水极限。我们的主要工具是当s 0 s≤1 4在直线上,s 0 s≤12在圆上,其中s 0 = 3 - 33 / 4≈0.1277时,H s中的ILW的新的无条件唯一性结果。在这里,我们将mo incat- pilod策略(Pure apple Anal 5:285-322, 2023)用于BO的ILW设置,将ILW视为BO的摄动并利用摄动项的平滑特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditional deep-water limit of the intermediate long wave equation in low-regularity.

In this paper, we establish the unconditional deep-water limit of the intermediate long wave equation (ILW) to the Benjamin-Ono equation (BO) in low-regularity Sobolev spaces on both the real line and the circle. Our main tool is new unconditional uniqueness results for ILW in H s when s 0 < s 1 4 on the line and s 0 < s < 1 2 on the circle, where s 0 = 3 - 33 / 4 0.1277 . Here, we adapt the strategy of Moşincat-Pilod (Pure Appl Anal 5:285-322, 2023) for BO to the setting of ILW by viewing ILW as a perturbation of BO and making use of the smoothing property of the perturbation term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
75
审稿时长
>12 weeks
期刊介绍: Nonlinear Differential Equations and Applications (NoDEA) provides a forum for research contributions on nonlinear differential equations motivated by application to applied sciences. The research areas of interest for NoDEA include, but are not limited to: deterministic and stochastic ordinary and partial differential equations, finite and infinite-dimensional dynamical systems, qualitative analysis of solutions, variational, topological and viscosity methods, mathematical control theory, complex dynamics and pattern formation, approximation and numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信