丰富的时钟蛋白表明植物昼夜节律时钟中缺少分子调控。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Systems Biology Pub Date : 2025-04-01 Epub Date: 2025-02-20 DOI:10.1038/s44320-025-00086-5
Uriel Urquiza-García, Nacho Molina, Karen J Halliday, Andrew J Millar
{"title":"丰富的时钟蛋白表明植物昼夜节律时钟中缺少分子调控。","authors":"Uriel Urquiza-García, Nacho Molina, Karen J Halliday, Andrew J Millar","doi":"10.1038/s44320-025-00086-5","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the biochemistry behind whole-organism traits such as flowering time is a longstanding challenge, where mathematical models are critical. Very few models of plant gene circuits use the absolute units required for comparison to biochemical data. We refactor two detailed models of the plant circadian clock from relative to absolute units. Using absolute RNA quantification, a simple model predicted abundant clock protein levels in Arabidopsis thaliana, up to 100,000 proteins per cell. NanoLUC reporter protein fusions validated the predicted levels of clock proteins in vivo. Recalibrating the detailed models to these protein levels estimated their DNA-binding dissociation constants (K<sub>d</sub>). We estimate the same K<sub>d</sub> from multiple results in vitro, extending the method to any promoter sequence. The detailed models simulated the K<sub>d</sub> range estimated from LUX DNA-binding in vitro but departed from the data for CCA1 binding, pointing to further circadian mechanisms. Our analytical and experimental methods should transfer to understand other plant gene regulatory networks, potentially including the natural sequence variation that contributes to evolutionary adaptation.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"361-389"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965494/pdf/","citationCount":"0","resultStr":"{\"title\":\"Abundant clock proteins point to missing molecular regulation in the plant circadian clock.\",\"authors\":\"Uriel Urquiza-García, Nacho Molina, Karen J Halliday, Andrew J Millar\",\"doi\":\"10.1038/s44320-025-00086-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the biochemistry behind whole-organism traits such as flowering time is a longstanding challenge, where mathematical models are critical. Very few models of plant gene circuits use the absolute units required for comparison to biochemical data. We refactor two detailed models of the plant circadian clock from relative to absolute units. Using absolute RNA quantification, a simple model predicted abundant clock protein levels in Arabidopsis thaliana, up to 100,000 proteins per cell. NanoLUC reporter protein fusions validated the predicted levels of clock proteins in vivo. Recalibrating the detailed models to these protein levels estimated their DNA-binding dissociation constants (K<sub>d</sub>). We estimate the same K<sub>d</sub> from multiple results in vitro, extending the method to any promoter sequence. The detailed models simulated the K<sub>d</sub> range estimated from LUX DNA-binding in vitro but departed from the data for CCA1 binding, pointing to further circadian mechanisms. Our analytical and experimental methods should transfer to understand other plant gene regulatory networks, potentially including the natural sequence variation that contributes to evolutionary adaptation.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"361-389\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965494/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-025-00086-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00086-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

理解整个生物体特征(如开花时间)背后的生物化学是一个长期的挑战,其中数学模型至关重要。很少有植物基因回路模型使用与生化数据比较所需的绝对单位。我们重构了植物生物钟的两个详细模型,从相对单位到绝对单位。利用绝对RNA定量,一个简单的模型预测了拟南芥中丰富的时钟蛋白水平,每个细胞高达10万个蛋白质。NanoLUC报告蛋白融合在体内验证了预测的时钟蛋白水平。重新校准这些蛋白质水平的详细模型,估计它们的dna结合解离常数(Kd)。我们从多个体外结果中估计相同的Kd,将该方法扩展到任何启动子序列。详细的模型模拟了体外LUX dna结合估计的Kd范围,但偏离了CCA1结合的数据,指出了进一步的昼夜节律机制。我们的分析和实验方法应该转移到了解其他植物基因调控网络,可能包括有助于进化适应的自然序列变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abundant clock proteins point to missing molecular regulation in the plant circadian clock.

Understanding the biochemistry behind whole-organism traits such as flowering time is a longstanding challenge, where mathematical models are critical. Very few models of plant gene circuits use the absolute units required for comparison to biochemical data. We refactor two detailed models of the plant circadian clock from relative to absolute units. Using absolute RNA quantification, a simple model predicted abundant clock protein levels in Arabidopsis thaliana, up to 100,000 proteins per cell. NanoLUC reporter protein fusions validated the predicted levels of clock proteins in vivo. Recalibrating the detailed models to these protein levels estimated their DNA-binding dissociation constants (Kd). We estimate the same Kd from multiple results in vitro, extending the method to any promoter sequence. The detailed models simulated the Kd range estimated from LUX DNA-binding in vitro but departed from the data for CCA1 binding, pointing to further circadian mechanisms. Our analytical and experimental methods should transfer to understand other plant gene regulatory networks, potentially including the natural sequence variation that contributes to evolutionary adaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信