METTL3通过调节转录因子BACH2介导CPB1表达,促进晶状体上皮细胞凋亡和氧化应激。

IF 2.9 4区 生物学 Q2 BIOPHYSICS
Zhangxing Sheng, Yu Pan, Liqin Shao, Yihui Bao
{"title":"METTL3通过调节转录因子BACH2介导CPB1表达,促进晶状体上皮细胞凋亡和氧化应激。","authors":"Zhangxing Sheng, Yu Pan, Liqin Shao, Yihui Bao","doi":"10.1007/s10863-025-10054-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cataracts are a significant cause of vision loss, adversely affecting the quality of human life. Numerous studies have reported that lens epithelial cells (LECs) play a crucial role in age-related cataract (ARC). However, the roles of carboxypeptidase B 1 (CPB1) and transcription factor BTB and CNC homologue 2 (BACH2) in the pathogenesis of ARC remain unclear. In this study, we aim to explore the contributions of CPB1 and BACH2 to the development of ARC.</p><p><strong>Methods: </strong>The Gene Expression Omnibus (GEO) was utilized to screen for differentially expressed genes. mRNA and protein levels were assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis. Flow cytometry was conducted to analyze apoptosis. The levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) were measured using a commercial kit. Dual-luciferase reporter assays and chromatin immunoprecipitation (CHIP) were performed to investigate the interaction between CPB1 and BACH2. The methylation site of BACH2 was analyzed using the RNA-protein binding sites prediction suite and the sequence-based RNA adenosine methylation site predictor suite. Methylated RNA immunoprecipitation (Me-RIP) was employed to detect m6A modification level of BACH2.</p><p><strong>Results: </strong>In ARC and H<sub>2</sub>O<sub>2</sub>-induced human lens epithelial cells (HLECs), CPB1, BACH2, and METTL3 were found to be up-regulated. Silencing CPB1 reduced apoptosis and MDA levels while enhancing the activities of SOD and GSH-PX in H<sub>2</sub>O<sub>2</sub>-induced HLECs. Additionally, CPB1 was shown to bind to BACH2, and knockdown of BACH2 attenuated apoptosis and oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced HLECs by targeting CPB1. Notably, METTL3 promoted the BACH2 expression by enhancing CPB1 expression in H<sub>2</sub>O<sub>2</sub>-induced HLECs. Finally, silencing METTL3 inhibited apoptosis and oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced HLECs by hampering BACH2 expression.</p><p><strong>Conclusions: </strong>METTL3 facilitates apoptosis and oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced HLECs by promoting the modification of BACH2 and CPB1 expression.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"METTL3 mediates CPB1 expression by regulating transcription factor BACH2 to promote apoptosis and oxidative stress of lens epithelial cells.\",\"authors\":\"Zhangxing Sheng, Yu Pan, Liqin Shao, Yihui Bao\",\"doi\":\"10.1007/s10863-025-10054-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cataracts are a significant cause of vision loss, adversely affecting the quality of human life. Numerous studies have reported that lens epithelial cells (LECs) play a crucial role in age-related cataract (ARC). However, the roles of carboxypeptidase B 1 (CPB1) and transcription factor BTB and CNC homologue 2 (BACH2) in the pathogenesis of ARC remain unclear. In this study, we aim to explore the contributions of CPB1 and BACH2 to the development of ARC.</p><p><strong>Methods: </strong>The Gene Expression Omnibus (GEO) was utilized to screen for differentially expressed genes. mRNA and protein levels were assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis. Flow cytometry was conducted to analyze apoptosis. The levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) were measured using a commercial kit. Dual-luciferase reporter assays and chromatin immunoprecipitation (CHIP) were performed to investigate the interaction between CPB1 and BACH2. The methylation site of BACH2 was analyzed using the RNA-protein binding sites prediction suite and the sequence-based RNA adenosine methylation site predictor suite. Methylated RNA immunoprecipitation (Me-RIP) was employed to detect m6A modification level of BACH2.</p><p><strong>Results: </strong>In ARC and H<sub>2</sub>O<sub>2</sub>-induced human lens epithelial cells (HLECs), CPB1, BACH2, and METTL3 were found to be up-regulated. Silencing CPB1 reduced apoptosis and MDA levels while enhancing the activities of SOD and GSH-PX in H<sub>2</sub>O<sub>2</sub>-induced HLECs. Additionally, CPB1 was shown to bind to BACH2, and knockdown of BACH2 attenuated apoptosis and oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced HLECs by targeting CPB1. Notably, METTL3 promoted the BACH2 expression by enhancing CPB1 expression in H<sub>2</sub>O<sub>2</sub>-induced HLECs. Finally, silencing METTL3 inhibited apoptosis and oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced HLECs by hampering BACH2 expression.</p><p><strong>Conclusions: </strong>METTL3 facilitates apoptosis and oxidative stress in H<sub>2</sub>O<sub>2</sub>-induced HLECs by promoting the modification of BACH2 and CPB1 expression.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-025-10054-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-025-10054-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:白内障是导致视力丧失的重要原因,对人类生活质量产生不利影响。大量研究报道晶状体上皮细胞(LECs)在年龄相关性白内障(ARC)中起着至关重要的作用。然而,羧基肽酶b1 (CPB1)、转录因子BTB和CNC同源物2 (BACH2)在ARC发病机制中的作用尚不清楚。在本研究中,我们旨在探讨CPB1和BACH2对ARC发展的贡献。方法:采用基因表达图谱(Gene Expression Omnibus, GEO)筛选差异表达基因。采用定量逆转录聚合酶链反应(qRT-PCR)和western blot方法检测mRNA和蛋白水平。流式细胞术检测细胞凋亡。超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)和丙二醛(MDA)水平采用商用试剂盒测定。采用双荧光素酶报告基因法和染色质免疫沉淀法(CHIP)研究CPB1和BACH2之间的相互作用。使用RNA-蛋白结合位点预测套件和基于序列的RNA腺苷甲基化位点预测套件分析BACH2的甲基化位点。采用甲基化RNA免疫沉淀(Me-RIP)检测BACH2的m6A修饰水平。结果:在ARC和h2o2诱导的人晶状体上皮细胞(HLECs)中,CPB1、BACH2和METTL3表达上调。沉默CPB1可降低h2o2诱导的HLECs细胞的凋亡和MDA水平,同时提高SOD和GSH-PX的活性。此外,CPB1被证明与BACH2结合,并且通过靶向CPB1,敲低BACH2可减轻h2o2诱导的HLECs的凋亡和氧化应激。值得注意的是,METTL3通过增强h2o2诱导的HLECs中CPB1的表达来促进BACH2的表达。最后,沉默METTL3通过抑制BACH2表达抑制h2o2诱导的HLECs细胞凋亡和氧化应激。结论:METTL3通过促进BACH2和CPB1表达的改变,促进h2o2诱导的HLECs细胞凋亡和氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
METTL3 mediates CPB1 expression by regulating transcription factor BACH2 to promote apoptosis and oxidative stress of lens epithelial cells.

Background: Cataracts are a significant cause of vision loss, adversely affecting the quality of human life. Numerous studies have reported that lens epithelial cells (LECs) play a crucial role in age-related cataract (ARC). However, the roles of carboxypeptidase B 1 (CPB1) and transcription factor BTB and CNC homologue 2 (BACH2) in the pathogenesis of ARC remain unclear. In this study, we aim to explore the contributions of CPB1 and BACH2 to the development of ARC.

Methods: The Gene Expression Omnibus (GEO) was utilized to screen for differentially expressed genes. mRNA and protein levels were assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis. Flow cytometry was conducted to analyze apoptosis. The levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) were measured using a commercial kit. Dual-luciferase reporter assays and chromatin immunoprecipitation (CHIP) were performed to investigate the interaction between CPB1 and BACH2. The methylation site of BACH2 was analyzed using the RNA-protein binding sites prediction suite and the sequence-based RNA adenosine methylation site predictor suite. Methylated RNA immunoprecipitation (Me-RIP) was employed to detect m6A modification level of BACH2.

Results: In ARC and H2O2-induced human lens epithelial cells (HLECs), CPB1, BACH2, and METTL3 were found to be up-regulated. Silencing CPB1 reduced apoptosis and MDA levels while enhancing the activities of SOD and GSH-PX in H2O2-induced HLECs. Additionally, CPB1 was shown to bind to BACH2, and knockdown of BACH2 attenuated apoptosis and oxidative stress in H2O2-induced HLECs by targeting CPB1. Notably, METTL3 promoted the BACH2 expression by enhancing CPB1 expression in H2O2-induced HLECs. Finally, silencing METTL3 inhibited apoptosis and oxidative stress in H2O2-induced HLECs by hampering BACH2 expression.

Conclusions: METTL3 facilitates apoptosis and oxidative stress in H2O2-induced HLECs by promoting the modification of BACH2 and CPB1 expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
22
审稿时长
6-12 weeks
期刊介绍: The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信