槲皮素-3-甲基醚诱导早期凋亡克服HRV1B免疫逃避,抑制病毒复制,减轻炎症发病机制

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-21 DOI:10.4062/biomolther.2024.204
Jae-Hyoung Song, Seo-Hyeon Mun, Sunil Mishra, Seong-Ryeol Kim, Heejung Yang, Sun Shim Choi, Min-Jung Kim, Dong-Yeop Kim, Sungchan Cho, Youngwook Ham, Hwa-Jung Choi, Won-Jin Baek, Yong Soo Kwon, Jae-Hoon Chang, Hyun-Jeong Ko
{"title":"槲皮素-3-甲基醚诱导早期凋亡克服HRV1B免疫逃避,抑制病毒复制,减轻炎症发病机制","authors":"Jae-Hyoung Song, Seo-Hyeon Mun, Sunil Mishra, Seong-Ryeol Kim, Heejung Yang, Sun Shim Choi, Min-Jung Kim, Dong-Yeop Kim, Sungchan Cho, Youngwook Ham, Hwa-Jung Choi, Won-Jin Baek, Yong Soo Kwon, Jae-Hoon Chang, Hyun-Jeong Ko","doi":"10.4062/biomolther.2024.204","DOIUrl":null,"url":null,"abstract":"<p><p>Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from <i>Serratula coronata</i>, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. <i>In vivo</i> administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"388-398"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893485/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis.\",\"authors\":\"Jae-Hyoung Song, Seo-Hyeon Mun, Sunil Mishra, Seong-Ryeol Kim, Heejung Yang, Sun Shim Choi, Min-Jung Kim, Dong-Yeop Kim, Sungchan Cho, Youngwook Ham, Hwa-Jung Choi, Won-Jin Baek, Yong Soo Kwon, Jae-Hoon Chang, Hyun-Jeong Ko\",\"doi\":\"10.4062/biomolther.2024.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from <i>Serratula coronata</i>, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. <i>In vivo</i> administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"388-398\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893485/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2024.204\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.204","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

人类鼻病毒(HRV)引起普通感冒,并加剧慢性呼吸道疾病,如哮喘和慢性阻塞性肺病。尽管它对公共卫生产生重大影响,但目前尚无批准的针对HRV感染的疫苗或抗病毒治疗方法。细胞凋亡是细胞在各种刺激作用下,通过系统激活内在死亡通路来消灭自身的过程。它在病毒感染中起着重要作用,是病毒与宿主相互作用的关键免疫防御机制。在本研究中,我们研究了槲皮素-3-甲基醚对人鼻病毒1B (HRV1B)的抗病毒作用。槲皮素-3-甲基醚是一种从冠状锯霉中分离得到的类黄酮。槲皮素-3-甲基醚以浓度依赖性的方式显著抑制HRV1B在HeLa细胞中的复制,从而降低细胞病变效应和病毒RNA水平。时间过程和添加时间分析证实,槲皮素-3-甲基醚在病毒感染的早期阶段表现出抗病毒活性,可能靶向复制和翻译阶段。基因表达微阵列分析显示,槲皮素-3-甲基醚处理的细胞中促凋亡基因上调,表明槲皮素-3-甲基醚促进细胞早期凋亡,以对抗hrv1b诱导的免疫逃逸。hrv1b感染小鼠体内给予槲皮素-3-甲基醚可显著降低肺组织中病毒RNA水平和炎症细胞因子的产生。我们的研究结果证明槲皮素-3-甲基醚作为一种新的HRV1B抗病毒药物的潜力,从而为HRV1B感染和相关并发症的治疗提供了一种有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis.

Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信