Rong Han, Yue Wu, Yehong Yang, Qiaochu Wang, Tao Ding, Xutong Zhang, Juntao Yang
{"title":"机械诱导乳腺癌细胞癌变的动态蛋白质组学和乙酰组学分析。","authors":"Rong Han, Yue Wu, Yehong Yang, Qiaochu Wang, Tao Ding, Xutong Zhang, Juntao Yang","doi":"10.1002/pmic.202400409","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Compared to regular tumor cells, cancer stem cells exhibit dangerous characteristics, including high proliferation, high metastatic potential, and significantly increased in vivo tumorigenicity. Although some studies have emphasized the impact of the microenvironment on cell stemness, they have largely overlooked the mechanical forces derived from the stiffness of the surrounding extracellular matrix. Our previous research demonstrated that a 90 Pa soft fibrin matrix in three-dimensional (3D) culture can induce cells to become cancer repopulating cells with high stemness. Acetylation modification significantly influences the metabolism, epigenetics, proliferation, migration, and immune evasion of tumor cells. In this study, we performed a comprehensive analysis of the proteome and acetyl-proteome of breast cancer cells under two-dimensional (2D) plate and 3D matrix conditions with varying stiffness. This dataset provides a valuable resource for understanding the dynamic regulation of protein acetylation in response to mechanical stiffness. The mass spectrometry-based proteomics data have been uploaded to the ProteomeXchange Consortium with the dataset identifier PXD057820.</p>\n </div>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Proteomic and Acetylomic Profiling of Mechanically Induced Cancer Stemness in Breast Cancer Cells\",\"authors\":\"Rong Han, Yue Wu, Yehong Yang, Qiaochu Wang, Tao Ding, Xutong Zhang, Juntao Yang\",\"doi\":\"10.1002/pmic.202400409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Compared to regular tumor cells, cancer stem cells exhibit dangerous characteristics, including high proliferation, high metastatic potential, and significantly increased in vivo tumorigenicity. Although some studies have emphasized the impact of the microenvironment on cell stemness, they have largely overlooked the mechanical forces derived from the stiffness of the surrounding extracellular matrix. Our previous research demonstrated that a 90 Pa soft fibrin matrix in three-dimensional (3D) culture can induce cells to become cancer repopulating cells with high stemness. Acetylation modification significantly influences the metabolism, epigenetics, proliferation, migration, and immune evasion of tumor cells. In this study, we performed a comprehensive analysis of the proteome and acetyl-proteome of breast cancer cells under two-dimensional (2D) plate and 3D matrix conditions with varying stiffness. This dataset provides a valuable resource for understanding the dynamic regulation of protein acetylation in response to mechanical stiffness. The mass spectrometry-based proteomics data have been uploaded to the ProteomeXchange Consortium with the dataset identifier PXD057820.</p>\\n </div>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\"25 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202400409\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202400409","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Dynamic Proteomic and Acetylomic Profiling of Mechanically Induced Cancer Stemness in Breast Cancer Cells
Compared to regular tumor cells, cancer stem cells exhibit dangerous characteristics, including high proliferation, high metastatic potential, and significantly increased in vivo tumorigenicity. Although some studies have emphasized the impact of the microenvironment on cell stemness, they have largely overlooked the mechanical forces derived from the stiffness of the surrounding extracellular matrix. Our previous research demonstrated that a 90 Pa soft fibrin matrix in three-dimensional (3D) culture can induce cells to become cancer repopulating cells with high stemness. Acetylation modification significantly influences the metabolism, epigenetics, proliferation, migration, and immune evasion of tumor cells. In this study, we performed a comprehensive analysis of the proteome and acetyl-proteome of breast cancer cells under two-dimensional (2D) plate and 3D matrix conditions with varying stiffness. This dataset provides a valuable resource for understanding the dynamic regulation of protein acetylation in response to mechanical stiffness. The mass spectrometry-based proteomics data have been uploaded to the ProteomeXchange Consortium with the dataset identifier PXD057820.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.