外域组合非线性分数阶Schrödinger方程的归一化解

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Ting-Ting Dai, Zeng-Qi Ou, Ying Lv
{"title":"外域组合非线性分数阶Schrödinger方程的归一化解","authors":"Ting-Ting Dai,&nbsp;Zeng-Qi Ou,&nbsp;Ying Lv","doi":"10.1007/s10440-025-00713-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the existence of solutions for the following nonlinear Schrödinger equation with <span>\\(L^{2}\\)</span>-norm constraint </p><div><div><span>$$ \\left \\{ \\textstyle\\begin{array}{l@{\\quad }l} (-\\Delta )^{s} u=\\lambda u+\\mu |u|^{q-2} u+ |u|^{p-2} u &amp; \\text{ in } \\Omega , \\\\ u=0 &amp; \\text{ on } \\partial \\Omega , \\\\ \\int _{\\Omega }u^{2} d x=a^{2}, &amp; \\end{array}\\displaystyle \\right . $$</span></div></div><p> where <span>\\(s\\in (0,1)\\)</span>, <span>\\(\\mu ,a&gt;0\\)</span>, <span>\\(N\\ge 3\\)</span>, <span>\\(2&lt; q&lt; p&lt;2+\\frac{4s}{N}\\)</span>, <span>\\((-\\Delta )^{s}\\)</span> is the fractional Laplacian operator, <span>\\(\\Omega \\subseteq \\mathbb{R}^{N}\\)</span> is an exterior domain, that is, <span>\\(\\Omega \\)</span> is an unbounded domain in <span>\\(\\mathbb{R}^{N}\\)</span> with <span>\\(\\mathbb{R}^{N}\\backslash \\Omega \\)</span> non-empty and bounded and <span>\\(\\lambda \\in \\mathbb{R}\\)</span> is Lagrange multiplier, which appears due to the mass constraint <span>\\(||u||_{L^{2}(\\Omega )}= a\\)</span>. In this paper, we use Brouwer degree, barycentric functions and minimax method to prove that for any <span>\\(a &gt; 0\\)</span>, there exists a positive solution <span>\\(u\\in H^{s}_{0} (\\Omega )\\)</span> for some <span>\\(\\lambda &lt;0\\)</span> if <span>\\(\\mathbb{R}^{N}\\backslash \\Omega \\)</span> is contained in a small ball.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"196 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Solutions of Fractional Schrödinger Equations with Combined Nonlinearities in Exterior Domains\",\"authors\":\"Ting-Ting Dai,&nbsp;Zeng-Qi Ou,&nbsp;Ying Lv\",\"doi\":\"10.1007/s10440-025-00713-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the existence of solutions for the following nonlinear Schrödinger equation with <span>\\\\(L^{2}\\\\)</span>-norm constraint </p><div><div><span>$$ \\\\left \\\\{ \\\\textstyle\\\\begin{array}{l@{\\\\quad }l} (-\\\\Delta )^{s} u=\\\\lambda u+\\\\mu |u|^{q-2} u+ |u|^{p-2} u &amp; \\\\text{ in } \\\\Omega , \\\\\\\\ u=0 &amp; \\\\text{ on } \\\\partial \\\\Omega , \\\\\\\\ \\\\int _{\\\\Omega }u^{2} d x=a^{2}, &amp; \\\\end{array}\\\\displaystyle \\\\right . $$</span></div></div><p> where <span>\\\\(s\\\\in (0,1)\\\\)</span>, <span>\\\\(\\\\mu ,a&gt;0\\\\)</span>, <span>\\\\(N\\\\ge 3\\\\)</span>, <span>\\\\(2&lt; q&lt; p&lt;2+\\\\frac{4s}{N}\\\\)</span>, <span>\\\\((-\\\\Delta )^{s}\\\\)</span> is the fractional Laplacian operator, <span>\\\\(\\\\Omega \\\\subseteq \\\\mathbb{R}^{N}\\\\)</span> is an exterior domain, that is, <span>\\\\(\\\\Omega \\\\)</span> is an unbounded domain in <span>\\\\(\\\\mathbb{R}^{N}\\\\)</span> with <span>\\\\(\\\\mathbb{R}^{N}\\\\backslash \\\\Omega \\\\)</span> non-empty and bounded and <span>\\\\(\\\\lambda \\\\in \\\\mathbb{R}\\\\)</span> is Lagrange multiplier, which appears due to the mass constraint <span>\\\\(||u||_{L^{2}(\\\\Omega )}= a\\\\)</span>. In this paper, we use Brouwer degree, barycentric functions and minimax method to prove that for any <span>\\\\(a &gt; 0\\\\)</span>, there exists a positive solution <span>\\\\(u\\\\in H^{s}_{0} (\\\\Omega )\\\\)</span> for some <span>\\\\(\\\\lambda &lt;0\\\\)</span> if <span>\\\\(\\\\mathbb{R}^{N}\\\\backslash \\\\Omega \\\\)</span> is contained in a small ball.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-025-00713-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00713-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑以下非线性Schrödinger方程解的存在性 \(L^{2}\)-范数约束 $$ \left \{ \textstyle\begin{array}{l@{\quad }l} (-\Delta )^{s} u=\lambda u+\mu |u|^{q-2} u+ |u|^{p-2} u & \text{ in } \Omega , \\ u=0 & \text{ on } \partial \Omega , \\ \int _{\Omega }u^{2} d x=a^{2}, & \end{array}\displaystyle \right . $$ 在哪里 \(s\in (0,1)\), \(\mu ,a>0\), \(N\ge 3\), \(2< q< p<2+\frac{4s}{N}\), \((-\Delta )^{s}\) 是分数阶拉普拉斯算子, \(\Omega \subseteq \mathbb{R}^{N}\) 是一个外域,也就是说, \(\Omega \) 无界域在吗 \(\mathbb{R}^{N}\) 有 \(\mathbb{R}^{N}\backslash \Omega \) 非空的有界的和 \(\lambda \in \mathbb{R}\) 是拉格朗日乘数,它是由于质量约束而出现的 \(||u||_{L^{2}(\Omega )}= a\)。本文利用browwer度、质心函数和极大极小法证明了这一点 \(a > 0\),存在一个正解 \(u\in H^{s}_{0} (\Omega )\) 对一些人来说 \(\lambda <0\) 如果 \(\mathbb{R}^{N}\backslash \Omega \) 被装在一个小球里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized Solutions of Fractional Schrödinger Equations with Combined Nonlinearities in Exterior Domains

In this paper, we consider the existence of solutions for the following nonlinear Schrödinger equation with \(L^{2}\)-norm constraint

$$ \left \{ \textstyle\begin{array}{l@{\quad }l} (-\Delta )^{s} u=\lambda u+\mu |u|^{q-2} u+ |u|^{p-2} u & \text{ in } \Omega , \\ u=0 & \text{ on } \partial \Omega , \\ \int _{\Omega }u^{2} d x=a^{2}, & \end{array}\displaystyle \right . $$

where \(s\in (0,1)\), \(\mu ,a>0\), \(N\ge 3\), \(2< q< p<2+\frac{4s}{N}\), \((-\Delta )^{s}\) is the fractional Laplacian operator, \(\Omega \subseteq \mathbb{R}^{N}\) is an exterior domain, that is, \(\Omega \) is an unbounded domain in \(\mathbb{R}^{N}\) with \(\mathbb{R}^{N}\backslash \Omega \) non-empty and bounded and \(\lambda \in \mathbb{R}\) is Lagrange multiplier, which appears due to the mass constraint \(||u||_{L^{2}(\Omega )}= a\). In this paper, we use Brouwer degree, barycentric functions and minimax method to prove that for any \(a > 0\), there exists a positive solution \(u\in H^{s}_{0} (\Omega )\) for some \(\lambda <0\) if \(\mathbb{R}^{N}\backslash \Omega \) is contained in a small ball.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信