基于优先级感知组的ris辅助无线网络多跳路由方案

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Lakshmikanta Sau;Priyadarshi Mukherjee;Sasthi C. Ghosh
{"title":"基于优先级感知组的ris辅助无线网络多跳路由方案","authors":"Lakshmikanta Sau;Priyadarshi Mukherjee;Sasthi C. Ghosh","doi":"10.1109/TNSE.2024.3524619","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surfaces (RISs) is a novel communication technology that has been recently presented as a potential candidate for beyond fifth-generation wireless communication networks. In this paper, we propose a priority-aware user traffic-dependent grouping-based multihop routing scheme for a RIS-assisted millimeter wave (mmWave) device-to-device (D2D) communication network with spatially correlated channels. Specifically, the proposed scheme exploits the priority of the users (based on their respective delay-constrained applications) and the aspect of spatial correlation in the narrowly spaced reflecting elements of the RISs. Here, based on the other users in the neighborhood, their respective traffic characteristics, and the already deployed RISs in the surroundings, we establish a multihop connection for information transfer from one of the users to its intended receiver. In this context, we take into account the impact of considering practical discrete phase shifts at the RIS patches instead of its ideal continuous counterpart. Moreover, we also claim and demonstrate that the existing classic least remaining distance (LRD)-based approach is not always the optimal solution. Finally, numerical results demonstrate the advantages of the proposed strategy and that it significantly outperforms the existing benchmark schemes in terms of system performance metrics such as data throughput, energy consumption, as well as energy efficiency.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"1172-1185"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Priority-Aware Grouping-Based Multihop Routing Scheme for RIS-Assisted Wireless Networks\",\"authors\":\"Lakshmikanta Sau;Priyadarshi Mukherjee;Sasthi C. Ghosh\",\"doi\":\"10.1109/TNSE.2024.3524619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable intelligent surfaces (RISs) is a novel communication technology that has been recently presented as a potential candidate for beyond fifth-generation wireless communication networks. In this paper, we propose a priority-aware user traffic-dependent grouping-based multihop routing scheme for a RIS-assisted millimeter wave (mmWave) device-to-device (D2D) communication network with spatially correlated channels. Specifically, the proposed scheme exploits the priority of the users (based on their respective delay-constrained applications) and the aspect of spatial correlation in the narrowly spaced reflecting elements of the RISs. Here, based on the other users in the neighborhood, their respective traffic characteristics, and the already deployed RISs in the surroundings, we establish a multihop connection for information transfer from one of the users to its intended receiver. In this context, we take into account the impact of considering practical discrete phase shifts at the RIS patches instead of its ideal continuous counterpart. Moreover, we also claim and demonstrate that the existing classic least remaining distance (LRD)-based approach is not always the optimal solution. Finally, numerical results demonstrate the advantages of the proposed strategy and that it significantly outperforms the existing benchmark schemes in terms of system performance metrics such as data throughput, energy consumption, as well as energy efficiency.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 2\",\"pages\":\"1172-1185\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829975/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829975/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可重构智能表面(RISs)是一种新型通信技术,最近被认为是第五代无线通信网络的潜在候选技术。在本文中,我们提出了一种基于优先级感知的用户流量依赖分组的多跳路由方案,用于具有空间相关信道的ris辅助毫米波(mmWave)设备对设备(D2D)通信网络。具体而言,该方案利用了用户的优先级(基于各自的延迟约束应用)和RISs窄间隔反射元素的空间相关性方面。在这里,基于附近的其他用户,他们各自的流量特征,以及周围已经部署的RISs,我们建立了一个多跳连接,用于从其中一个用户到其预期接收者的信息传输。在这种情况下,我们考虑考虑实际离散相移在RIS补丁,而不是其理想的连续对应物的影响。此外,我们还声明并证明了现有的基于最小剩余距离(LRD)的经典方法并不总是最优解。最后,数值结果证明了该策略的优势,并且在数据吞吐量、能耗和能效等系统性能指标方面明显优于现有的基准方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Priority-Aware Grouping-Based Multihop Routing Scheme for RIS-Assisted Wireless Networks
Reconfigurable intelligent surfaces (RISs) is a novel communication technology that has been recently presented as a potential candidate for beyond fifth-generation wireless communication networks. In this paper, we propose a priority-aware user traffic-dependent grouping-based multihop routing scheme for a RIS-assisted millimeter wave (mmWave) device-to-device (D2D) communication network with spatially correlated channels. Specifically, the proposed scheme exploits the priority of the users (based on their respective delay-constrained applications) and the aspect of spatial correlation in the narrowly spaced reflecting elements of the RISs. Here, based on the other users in the neighborhood, their respective traffic characteristics, and the already deployed RISs in the surroundings, we establish a multihop connection for information transfer from one of the users to its intended receiver. In this context, we take into account the impact of considering practical discrete phase shifts at the RIS patches instead of its ideal continuous counterpart. Moreover, we also claim and demonstrate that the existing classic least remaining distance (LRD)-based approach is not always the optimal solution. Finally, numerical results demonstrate the advantages of the proposed strategy and that it significantly outperforms the existing benchmark schemes in terms of system performance metrics such as data throughput, energy consumption, as well as energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信