离散竞争单扩散驱动Lotka-Volterra模型的图灵不稳定性

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mingyao Wen , Guang Zhang , Yubin Yan
{"title":"离散竞争单扩散驱动Lotka-Volterra模型的图灵不稳定性","authors":"Mingyao Wen ,&nbsp;Guang Zhang ,&nbsp;Yubin Yan","doi":"10.1016/j.chaos.2025.116146","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a discrete competitive Lotka–Volterra system with single diffusion under Neumann boundary conditions. It establishes the conditions for Turing instability and identifies the precise Turing bifurcation when the diffusion coefficient is used as a bifurcation parameter. Within Turing unstable regions, a variety of Turing patterns are explored via numerical simulations, encompassing lattice, nematode, auspicious cloud, spiral wave, polygon, and stripe patterns, as well as their combinations. The periodicity and complexity of these patterns are verified through bifurcation simulations, Lyapunov exponent analysis, trajectory or phase diagrams. These methods are also applicable to other single diffusion systems, including partial dissipation systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116146"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turing instability of a discrete competitive single diffusion-driven Lotka–Volterra model\",\"authors\":\"Mingyao Wen ,&nbsp;Guang Zhang ,&nbsp;Yubin Yan\",\"doi\":\"10.1016/j.chaos.2025.116146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper develops a discrete competitive Lotka–Volterra system with single diffusion under Neumann boundary conditions. It establishes the conditions for Turing instability and identifies the precise Turing bifurcation when the diffusion coefficient is used as a bifurcation parameter. Within Turing unstable regions, a variety of Turing patterns are explored via numerical simulations, encompassing lattice, nematode, auspicious cloud, spiral wave, polygon, and stripe patterns, as well as their combinations. The periodicity and complexity of these patterns are verified through bifurcation simulations, Lyapunov exponent analysis, trajectory or phase diagrams. These methods are also applicable to other single diffusion systems, including partial dissipation systems.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"194 \",\"pages\":\"Article 116146\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925001596\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001596","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在Neumann边界条件下,研究了具有单扩散的离散竞争Lotka-Volterra系统。以扩散系数作为分岔参数,建立了图灵不稳定的条件,确定了精确的图灵分岔。在图灵不稳定区域内,通过数值模拟探索了多种图灵图案,包括晶格、线虫、吉祥云、螺旋波、多边形和条纹图案及其组合。通过分岔模拟、李雅普诺夫指数分析、轨迹图或相图验证了这些模式的周期性和复杂性。这些方法也适用于其他单扩散系统,包括部分耗散系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turing instability of a discrete competitive single diffusion-driven Lotka–Volterra model
This paper develops a discrete competitive Lotka–Volterra system with single diffusion under Neumann boundary conditions. It establishes the conditions for Turing instability and identifies the precise Turing bifurcation when the diffusion coefficient is used as a bifurcation parameter. Within Turing unstable regions, a variety of Turing patterns are explored via numerical simulations, encompassing lattice, nematode, auspicious cloud, spiral wave, polygon, and stripe patterns, as well as their combinations. The periodicity and complexity of these patterns are verified through bifurcation simulations, Lyapunov exponent analysis, trajectory or phase diagrams. These methods are also applicable to other single diffusion systems, including partial dissipation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信