{"title":"求解凹代价网络流问题的一种改进的连续导数最短路径算法","authors":"Lu Yang, Zhouwang Yang","doi":"10.1016/j.orp.2025.100331","DOIUrl":null,"url":null,"abstract":"<div><div>As production scales up, transportation networks increasingly involve nonlinear costs, leading to the concave cost network flow problem (CCNFP), which is notably challenging due to its nonlinearity. Existing nonlinear programming methods addressing the CCNFP often suffer from low efficiency and high computational cost, limiting their practical application. To overcome these limitations, this paper proposes the Successive Derivative Shortest Path (SDSP) algorithm, an efficient approach that combines a sequential linear approximation framework with regional first-order information of the objective function. By integrating regional first-order information and employing an interval reduction mechanism, the SDSP algorithm effectively avoids premature convergence to suboptimal solutions, thereby achieving higher-quality solutions. Numerical experiments, including parameter selection, validation, and comparative analysis, demonstrate that the SDSP algorithm outperforms existing methods in terms of both solution quality and convergence speed. This research offers a robust and efficient solution for the CCNFP, with potential applications in various fields, including logistics and supply chain networks, where concave cost network flow issues are common.</div></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"14 ","pages":"Article 100331"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An advanced Successive Derivative Shortest Path algorithm for concave cost network flow problems\",\"authors\":\"Lu Yang, Zhouwang Yang\",\"doi\":\"10.1016/j.orp.2025.100331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As production scales up, transportation networks increasingly involve nonlinear costs, leading to the concave cost network flow problem (CCNFP), which is notably challenging due to its nonlinearity. Existing nonlinear programming methods addressing the CCNFP often suffer from low efficiency and high computational cost, limiting their practical application. To overcome these limitations, this paper proposes the Successive Derivative Shortest Path (SDSP) algorithm, an efficient approach that combines a sequential linear approximation framework with regional first-order information of the objective function. By integrating regional first-order information and employing an interval reduction mechanism, the SDSP algorithm effectively avoids premature convergence to suboptimal solutions, thereby achieving higher-quality solutions. Numerical experiments, including parameter selection, validation, and comparative analysis, demonstrate that the SDSP algorithm outperforms existing methods in terms of both solution quality and convergence speed. This research offers a robust and efficient solution for the CCNFP, with potential applications in various fields, including logistics and supply chain networks, where concave cost network flow issues are common.</div></div>\",\"PeriodicalId\":38055,\"journal\":{\"name\":\"Operations Research Perspectives\",\"volume\":\"14 \",\"pages\":\"Article 100331\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214716025000077\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716025000077","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
An advanced Successive Derivative Shortest Path algorithm for concave cost network flow problems
As production scales up, transportation networks increasingly involve nonlinear costs, leading to the concave cost network flow problem (CCNFP), which is notably challenging due to its nonlinearity. Existing nonlinear programming methods addressing the CCNFP often suffer from low efficiency and high computational cost, limiting their practical application. To overcome these limitations, this paper proposes the Successive Derivative Shortest Path (SDSP) algorithm, an efficient approach that combines a sequential linear approximation framework with regional first-order information of the objective function. By integrating regional first-order information and employing an interval reduction mechanism, the SDSP algorithm effectively avoids premature convergence to suboptimal solutions, thereby achieving higher-quality solutions. Numerical experiments, including parameter selection, validation, and comparative analysis, demonstrate that the SDSP algorithm outperforms existing methods in terms of both solution quality and convergence speed. This research offers a robust and efficient solution for the CCNFP, with potential applications in various fields, including logistics and supply chain networks, where concave cost network flow issues are common.