向量值多项式的BC1型非对称Jacobi多项式,第1部分:球面函数

IF 0.5 4区 数学 Q3 MATHEMATICS
M. van Horssen, M. van Pruijssen
{"title":"向量值多项式的BC1型非对称Jacobi多项式,第1部分:球面函数","authors":"M. van Horssen,&nbsp;M. van Pruijssen","doi":"10.1016/j.indag.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>We study non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> by means of vector-valued and matrix-valued orthogonal polynomials. The interpretation as matrix-valued orthogonal polynomials yields a new expression of the non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> in terms of the symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. In this interpretation, the Cherednik operator, that has the non-symmetric Jacobi polynomials as eigenfunctions, corresponds to two shift operators for the symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>.</div><div>We show that the non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> with so-called geometric root multiplicities, interpreted as vector-valued polynomials, can be identified with spherical functions on the sphere <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> associated with the fundamental spin-representation of <span><math><mrow><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The Cherednik operator corresponds to the Dirac operator for the spinors on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> in this interpretation.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 2","pages":"Pages 593-608"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-symmetric Jacobi polynomials of type BC1 as vector-valued polynomials, Part 1: Spherical functions\",\"authors\":\"M. van Horssen,&nbsp;M. van Pruijssen\",\"doi\":\"10.1016/j.indag.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> by means of vector-valued and matrix-valued orthogonal polynomials. The interpretation as matrix-valued orthogonal polynomials yields a new expression of the non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> in terms of the symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. In this interpretation, the Cherednik operator, that has the non-symmetric Jacobi polynomials as eigenfunctions, corresponds to two shift operators for the symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>.</div><div>We show that the non-symmetric Jacobi polynomials of type <span><math><mrow><mi>B</mi><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> with so-called geometric root multiplicities, interpreted as vector-valued polynomials, can be identified with spherical functions on the sphere <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> associated with the fundamental spin-representation of <span><math><mrow><mi>Spin</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The Cherednik operator corresponds to the Dirac operator for the spinors on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> in this interpretation.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 2\",\"pages\":\"Pages 593-608\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724001071\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724001071","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用向量值正交多项式和矩阵值正交多项式研究了BC1型的非对称Jacobi多项式。将矩阵值正交多项式解释为BC1型的对称Jacobi多项式,得到了BC1型的非对称Jacobi多项式的新表达式。在这种解释中,以非对称Jacobi多项式为特征函数的Cherednik算子对应于BC1型对称Jacobi多项式的两个移位算子。我们证明了具有所谓几何根多重性的BC1型非对称Jacobi多项式,可以解释为向量值多项式,可以用球面上的球面函数S2m+1=Spin(2m+2)/Spin(2m+1)与Spin(2m+1)的基本自旋表示相关联。在这种解释中,Cherednik算子对应于S2m+1上旋量的Dirac算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-symmetric Jacobi polynomials of type BC1 as vector-valued polynomials, Part 1: Spherical functions
We study non-symmetric Jacobi polynomials of type BC1 by means of vector-valued and matrix-valued orthogonal polynomials. The interpretation as matrix-valued orthogonal polynomials yields a new expression of the non-symmetric Jacobi polynomials of type BC1 in terms of the symmetric Jacobi polynomials of type BC1. In this interpretation, the Cherednik operator, that has the non-symmetric Jacobi polynomials as eigenfunctions, corresponds to two shift operators for the symmetric Jacobi polynomials of type BC1.
We show that the non-symmetric Jacobi polynomials of type BC1 with so-called geometric root multiplicities, interpreted as vector-valued polynomials, can be identified with spherical functions on the sphere S2m+1=Spin(2m+2)/Spin(2m+1) associated with the fundamental spin-representation of Spin(2m+1). The Cherednik operator corresponds to the Dirac operator for the spinors on S2m+1 in this interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信