高效激子太阳能电池中二维碲卤化物金属层间激子的空间控制:探测外部扰动下的激发态

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Amal Kishore, Harshita Seksaria, Abir De Sarkar
{"title":"高效激子太阳能电池中二维碲卤化物金属层间激子的空间控制:探测外部扰动下的激发态","authors":"Amal Kishore, Harshita Seksaria, Abir De Sarkar","doi":"10.1021/acs.jpcc.4c06964","DOIUrl":null,"url":null,"abstract":"In atomically thin 2D semiconductors, photoexcitation typically generates excitons with a binding energy of ∼500 meV, which is significantly larger than the thermal energy at room temperature (25 meV). This strong exciton binding limits efficient exciton dissociation, posing challenges for photovoltaic efficiency. Intralayer excitons experience relatively stronger screening than interlayer excitons, resulting in weaker binding for the latter. Despite this, interlayer exciton binding energy in 2D heterostructures remains above 100 meV. This study explores strategies to regulate exciton spatial localization and binding energy, such as dielectric screening and magnetic fields. The research extends beyond the ground state to analyze variations in excited states - 1s, 2s, 3s, 4s, and higher. We demonstrate a reduction in exciton binding energy by an order of magnitude with precise control of μeV. Moreover, the van der Waals heterostructure InTeI/InTeBr exhibits an ultrahigh exciton diffusion length in the micrometer range, along with anisotropy, both of which are beneficial for photovoltaic and optoelectronic applications. This makes it a promising solar cell candidate, achieving an efficiency of 14%.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"30 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Control of Interlayer Excitons in 2D Metal Tellurohalides for Efficient Excitonic Solar Cells: Probing Excited States under External Perturbations\",\"authors\":\"Amal Kishore, Harshita Seksaria, Abir De Sarkar\",\"doi\":\"10.1021/acs.jpcc.4c06964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In atomically thin 2D semiconductors, photoexcitation typically generates excitons with a binding energy of ∼500 meV, which is significantly larger than the thermal energy at room temperature (25 meV). This strong exciton binding limits efficient exciton dissociation, posing challenges for photovoltaic efficiency. Intralayer excitons experience relatively stronger screening than interlayer excitons, resulting in weaker binding for the latter. Despite this, interlayer exciton binding energy in 2D heterostructures remains above 100 meV. This study explores strategies to regulate exciton spatial localization and binding energy, such as dielectric screening and magnetic fields. The research extends beyond the ground state to analyze variations in excited states - 1s, 2s, 3s, 4s, and higher. We demonstrate a reduction in exciton binding energy by an order of magnitude with precise control of μeV. Moreover, the van der Waals heterostructure InTeI/InTeBr exhibits an ultrahigh exciton diffusion length in the micrometer range, along with anisotropy, both of which are beneficial for photovoltaic and optoelectronic applications. This makes it a promising solar cell candidate, achieving an efficiency of 14%.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c06964\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06964","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在原子薄的二维半导体中,光激发通常产生的激子结合能为~ 500 meV,明显大于室温下的热能(25 meV)。这种强激子结合限制了激子的有效解离,对光伏效率提出了挑战。层内激子比层间激子经历相对较强的筛选,导致后者的结合较弱。尽管如此,二维异质结构中的层间激子结合能仍然保持在100 meV以上。本研究探索了介电屏蔽和磁场等调节激子空间定位和结合能的策略。这项研究超越了基态,分析了激发态的变化——1s、2s、3s、4s和更高的激发态。我们证明了在μeV的精确控制下,激子结合能降低了一个数量级。此外,范德华异质结构InTeI/InTeBr在微米范围内具有超高的激子扩散长度和各向异性,这对光伏和光电子应用都是有利的。这使得它成为一个很有前途的太阳能电池候选者,达到14%的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatial Control of Interlayer Excitons in 2D Metal Tellurohalides for Efficient Excitonic Solar Cells: Probing Excited States under External Perturbations

Spatial Control of Interlayer Excitons in 2D Metal Tellurohalides for Efficient Excitonic Solar Cells: Probing Excited States under External Perturbations
In atomically thin 2D semiconductors, photoexcitation typically generates excitons with a binding energy of ∼500 meV, which is significantly larger than the thermal energy at room temperature (25 meV). This strong exciton binding limits efficient exciton dissociation, posing challenges for photovoltaic efficiency. Intralayer excitons experience relatively stronger screening than interlayer excitons, resulting in weaker binding for the latter. Despite this, interlayer exciton binding energy in 2D heterostructures remains above 100 meV. This study explores strategies to regulate exciton spatial localization and binding energy, such as dielectric screening and magnetic fields. The research extends beyond the ground state to analyze variations in excited states - 1s, 2s, 3s, 4s, and higher. We demonstrate a reduction in exciton binding energy by an order of magnitude with precise control of μeV. Moreover, the van der Waals heterostructure InTeI/InTeBr exhibits an ultrahigh exciton diffusion length in the micrometer range, along with anisotropy, both of which are beneficial for photovoltaic and optoelectronic applications. This makes it a promising solar cell candidate, achieving an efficiency of 14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信