单核分析揭示出生时唐氏综合征基底前脑氧化磷酸化失调。

Nicole R West, Kalpana Hanthanan Arachchilage, Sara Knaack, Shawn MacGregor, Masoumeh Hosseini, Ryan D Risgaard, Pubudu Kumarage, Jose L Martinez, Su-Chun Zhang, Daifeng Wang, Andre M M Sousa, Anita Bhattacharyya
{"title":"单核分析揭示出生时唐氏综合征基底前脑氧化磷酸化失调。","authors":"Nicole R West, Kalpana Hanthanan Arachchilage, Sara Knaack, Shawn MacGregor, Masoumeh Hosseini, Ryan D Risgaard, Pubudu Kumarage, Jose L Martinez, Su-Chun Zhang, Daifeng Wang, Andre M M Sousa, Anita Bhattacharyya","doi":"10.1101/2025.02.05.636750","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Basal forebrain cholinergic neurons (BFCNs) are integral to learning, attention, and memory, and are prone to degeneration in Down syndrome (DS), Alzheimer's disease, and other neurodegenerative diseases. However, the mechanisms that lead to the degeneration of these neurons are not known.</p><p><strong>Methods: </strong>Single-nucleus gene expression and ATAC sequencing were performed on postmortem human basal forebrain from unaffected control and DS tissue samples at 0-2 years of age (n=4 each).</p><p><strong>Results: </strong>Sequencing analysis of postmortem human basal forebrain identifies gene expression differences in DS early in life. Genes encoding proteins associated with energy metabolism pathways, specifically oxidative phosphorylation and glycolysis, and genes encoding antioxidant enzymes are upregulated in DS BFCNs.</p><p><strong>Discussion: </strong>Multiomic analyses reveal that energy metabolism may be disrupted in DS BFCNs by birth. Increased oxidative phosphorylation and the accumulation of reactive oxygen species byproducts may be early contributors to DS BFCN neurodegeneration.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839037/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-nucleus analysis reveals oxidative stress in Down syndrome basal forebrain neurons at birth.\",\"authors\":\"Nicole R West, Kalpana Hanthanan Arachchilage, Sara Knaack, Shawn MacGregor, Masoumeh Hosseini, Ryan D Risgaard, Pubudu Kumarage, Jose L Martinez, Su-Chun Zhang, Daifeng Wang, Andre M M Sousa, Anita Bhattacharyya\",\"doi\":\"10.1101/2025.02.05.636750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Basal forebrain cholinergic neurons (BFCNs) are integral to learning, attention, and memory, and are prone to degeneration in Down syndrome (DS), Alzheimer's disease, and other neurodegenerative diseases. However, the mechanisms that lead to the degeneration of these neurons are not known.</p><p><strong>Methods: </strong>Single-nucleus gene expression and ATAC sequencing were performed on postmortem human basal forebrain from unaffected control and DS tissue samples at 0-2 years of age (n=4 each).</p><p><strong>Results: </strong>Sequencing analysis of postmortem human basal forebrain identifies gene expression differences in DS early in life. Genes encoding proteins associated with energy metabolism pathways, specifically oxidative phosphorylation and glycolysis, and genes encoding antioxidant enzymes are upregulated in DS BFCNs.</p><p><strong>Discussion: </strong>Multiomic analyses reveal that energy metabolism may be disrupted in DS BFCNs by birth. Increased oxidative phosphorylation and the accumulation of reactive oxygen species byproducts may be early contributors to DS BFCN neurodegeneration.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839037/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.02.05.636750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.05.636750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:基底前脑胆碱能神经元(BFCNs)是学习、注意力和记忆不可或缺的神经元,在唐氏综合征(DS)、阿尔茨海默病和其他神经退行性疾病中易发生变性。然而,导致这些神经元退化的机制尚不清楚:方法:对 0-2 岁未受影响的对照组和 DS 组织样本(各 4 个)的人类死后基底前脑进行单核基因表达和 ATAC 测序:结果:对死后人类基底前脑的测序分析确定了出生后早期DS的基因表达差异。编码与能量代谢途径(特别是氧化磷酸化和糖酵解)相关的蛋白质的基因以及编码抗氧化酶的基因在DS基底前脑中上调:讨论:多组学分析表明,DS BFCNs 的能量代谢可能在出生时就已被破坏。氧化磷酸化的增加和活性氧副产物的积累可能是导致DS BFCN神经变性的早期因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-nucleus analysis reveals oxidative stress in Down syndrome basal forebrain neurons at birth.

Introduction: Basal forebrain cholinergic neurons (BFCNs) are integral to learning, attention, and memory, and are prone to degeneration in Down syndrome (DS), Alzheimer's disease, and other neurodegenerative diseases. However, the mechanisms that lead to the degeneration of these neurons are not known.

Methods: Single-nucleus gene expression and ATAC sequencing were performed on postmortem human basal forebrain from unaffected control and DS tissue samples at 0-2 years of age (n=4 each).

Results: Sequencing analysis of postmortem human basal forebrain identifies gene expression differences in DS early in life. Genes encoding proteins associated with energy metabolism pathways, specifically oxidative phosphorylation and glycolysis, and genes encoding antioxidant enzymes are upregulated in DS BFCNs.

Discussion: Multiomic analyses reveal that energy metabolism may be disrupted in DS BFCNs by birth. Increased oxidative phosphorylation and the accumulation of reactive oxygen species byproducts may be early contributors to DS BFCN neurodegeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信