NMTNet:用于乳腺肿瘤联合分割和分类的多任务深度学习网络。

Xuelian Yang, Yuanjun Wang, Li Sui
{"title":"NMTNet:用于乳腺肿瘤联合分割和分类的多任务深度学习网络。","authors":"Xuelian Yang, Yuanjun Wang, Li Sui","doi":"10.1007/s10278-025-01440-7","DOIUrl":null,"url":null,"abstract":"<p><p>Segmentation and classification of breast tumors are two critical tasks since they provide significant information for computer-aided breast cancer diagnosis. Combining these tasks leverages their intrinsic relevance to enhance performance, but the variability and complexity of tumor characteristics remain challenging. We propose a novel multi-task deep learning network (NMTNet) for the joint segmentation and classification of breast tumors, which is based on a convolutional neural network (CNN) and U-shaped architecture. It mainly comprises a shared encoder, a multi-scale fusion channel refinement (MFCR) module, a segmentation branch, and a classification branch. First, ResNet18 is used as the backbone network in the encoding part to enhance the feature representation capability. Then, the MFCR module is introduced to enrich the feature depth and diversity. Besides, the segmentation branch combines a lesion region enhancement (LRE) module between the encoder and decoder parts, aiming to capture more detailed texture and edge information of irregular tumors to improve segmentation accuracy. The classification branch incorporates a fine-grained classifier that reuses valuable segmentation information to discriminate between benign and malignant tumors. The proposed NMTNet is evaluated on both ultrasound and magnetic resonance imaging datasets. It achieves segmentation dice scores of 90.30% and 91.50%, and Jaccard indices of 84.70% and 88.10% for each dataset, respectively. And the classification accuracy scores are 87.50% and 99.64% for the corresponding datasets, respectively. Experimental results demonstrate the superiority of NMTNet over state-of-the-art methods on breast tumor segmentation and classification tasks.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMTNet: A Multi-task Deep Learning Network for Joint Segmentation and Classification of Breast Tumors.\",\"authors\":\"Xuelian Yang, Yuanjun Wang, Li Sui\",\"doi\":\"10.1007/s10278-025-01440-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Segmentation and classification of breast tumors are two critical tasks since they provide significant information for computer-aided breast cancer diagnosis. Combining these tasks leverages their intrinsic relevance to enhance performance, but the variability and complexity of tumor characteristics remain challenging. We propose a novel multi-task deep learning network (NMTNet) for the joint segmentation and classification of breast tumors, which is based on a convolutional neural network (CNN) and U-shaped architecture. It mainly comprises a shared encoder, a multi-scale fusion channel refinement (MFCR) module, a segmentation branch, and a classification branch. First, ResNet18 is used as the backbone network in the encoding part to enhance the feature representation capability. Then, the MFCR module is introduced to enrich the feature depth and diversity. Besides, the segmentation branch combines a lesion region enhancement (LRE) module between the encoder and decoder parts, aiming to capture more detailed texture and edge information of irregular tumors to improve segmentation accuracy. The classification branch incorporates a fine-grained classifier that reuses valuable segmentation information to discriminate between benign and malignant tumors. The proposed NMTNet is evaluated on both ultrasound and magnetic resonance imaging datasets. It achieves segmentation dice scores of 90.30% and 91.50%, and Jaccard indices of 84.70% and 88.10% for each dataset, respectively. And the classification accuracy scores are 87.50% and 99.64% for the corresponding datasets, respectively. Experimental results demonstrate the superiority of NMTNet over state-of-the-art methods on breast tumor segmentation and classification tasks.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01440-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01440-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺肿瘤的分割和分类为计算机辅助乳腺癌诊断提供了重要的信息,是两项关键任务。将这些任务结合起来利用它们的内在相关性来提高性能,但肿瘤特征的可变性和复杂性仍然具有挑战性。本文提出了一种基于卷积神经网络(CNN)和u型结构的新型多任务深度学习网络(NMTNet),用于乳腺肿瘤的联合分割和分类。它主要由共享编码器、多尺度融合信道细化(MFCR)模块、分割分支和分类分支组成。首先,在编码部分采用ResNet18作为骨干网,增强特征表示能力;然后,引入MFCR模块,丰富特征深度和多样性。此外,分割分支在编码器和解码器部分之间结合病灶区域增强(病灶区域增强,病灶区域增强)模块,旨在捕获不规则肿瘤更详细的纹理和边缘信息,提高分割精度。分类分支包含细粒度分类器,该分类器重用有价值的分割信息来区分良性和恶性肿瘤。提出的NMTNet在超声和磁共振成像数据集上进行了评估。每个数据集的分割骰子得分分别为90.30%和91.50%,Jaccard指数分别为84.70%和88.10%。对应数据集的分类准确率得分分别为87.50%和99.64%。实验结果证明了NMTNet在乳腺肿瘤分割和分类任务上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NMTNet: A Multi-task Deep Learning Network for Joint Segmentation and Classification of Breast Tumors.

Segmentation and classification of breast tumors are two critical tasks since they provide significant information for computer-aided breast cancer diagnosis. Combining these tasks leverages their intrinsic relevance to enhance performance, but the variability and complexity of tumor characteristics remain challenging. We propose a novel multi-task deep learning network (NMTNet) for the joint segmentation and classification of breast tumors, which is based on a convolutional neural network (CNN) and U-shaped architecture. It mainly comprises a shared encoder, a multi-scale fusion channel refinement (MFCR) module, a segmentation branch, and a classification branch. First, ResNet18 is used as the backbone network in the encoding part to enhance the feature representation capability. Then, the MFCR module is introduced to enrich the feature depth and diversity. Besides, the segmentation branch combines a lesion region enhancement (LRE) module between the encoder and decoder parts, aiming to capture more detailed texture and edge information of irregular tumors to improve segmentation accuracy. The classification branch incorporates a fine-grained classifier that reuses valuable segmentation information to discriminate between benign and malignant tumors. The proposed NMTNet is evaluated on both ultrasound and magnetic resonance imaging datasets. It achieves segmentation dice scores of 90.30% and 91.50%, and Jaccard indices of 84.70% and 88.10% for each dataset, respectively. And the classification accuracy scores are 87.50% and 99.64% for the corresponding datasets, respectively. Experimental results demonstrate the superiority of NMTNet over state-of-the-art methods on breast tumor segmentation and classification tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信