[表面增强拉曼散射提高MTT检测灵敏度]。

Q3 Medicine
V A Mushenkov, D A Lukyanov, N F Meshcheryakova, V I Kukushkin, E G Zavyalova
{"title":"[表面增强拉曼散射提高MTT检测灵敏度]。","authors":"V A Mushenkov, D A Lukyanov, N F Meshcheryakova, V I Kukushkin, E G Zavyalova","doi":"10.31857/S0026898424060134, EDN: IAFGAM","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, empirical therapy regimens are often used in the treatment of infectious diseases that are not based on data on pathogen resistance. One of the main reasons for the unjustified prescription of antibacterial drugs is the lack of rapid and at the same time universal methods of determining the antibiotic resistance of the pathogen. The most widely used culture techniques, such as the microdilution method, require a long time to generate the necessary number of bacterial cells. Less time-consuming methods of resistance assessment (genomic or proteomic) are based on the determination of specific markers (resistance genes, overexpression of certain proteins, etc.); in this case, the specific protocol is most often applicable to a narrow number of both microorganism strains and antibiotics. Previously, we demonstrated the possibility of using Raman spectroscopy (RS) technology for quantitative determination of the product of bacterial cell activity in the MTT assay, formazan, directly in the cell suspension. The absence of the formazan isolation step simplifies the assay and increases its accuracy. The analysis time did not exceed 2 h while maintaining the versatility of the MTT assay itself. Limitations of the developed protocol for RS detection of the MTT assay results include a high sensitivity threshold of 10^(7) CFU/mL for the bacterial cell concentration, so a preliminary stage of cultivation is necessary for samples with a low bacterial content. Here, we propose a method to increase the sensitivity of formazan determination by utilizing the effect of surface-enhanced Raman scattering (SERS) on gold nanoparticles. As a result of this study, the optimal conditions for SERS analysis of formazan in both solution and suspension of Escherichia coli cells are selected. Formazan signal amplification due to the use of SERS on gold nanoparticles instead of RS allowed us to reduce the sensitivity threshold for the number of bacterial cells in the sample by at least 30 times, up to 3 x 10^(5) CFU/mL. This sensitivity is not the limit of the SERS technology capabilities because the introduction of other types of nanoparticles (more optimal in shape, size, concentration, etc.) into the experiment will allow one to achieve even higher signal amplification.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 6","pages":"1031-1040"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Surface-Enhanced Raman Scattering to Improve the Sensitivity of the MTT Assay].\",\"authors\":\"V A Mushenkov, D A Lukyanov, N F Meshcheryakova, V I Kukushkin, E G Zavyalova\",\"doi\":\"10.31857/S0026898424060134, EDN: IAFGAM\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, empirical therapy regimens are often used in the treatment of infectious diseases that are not based on data on pathogen resistance. One of the main reasons for the unjustified prescription of antibacterial drugs is the lack of rapid and at the same time universal methods of determining the antibiotic resistance of the pathogen. The most widely used culture techniques, such as the microdilution method, require a long time to generate the necessary number of bacterial cells. Less time-consuming methods of resistance assessment (genomic or proteomic) are based on the determination of specific markers (resistance genes, overexpression of certain proteins, etc.); in this case, the specific protocol is most often applicable to a narrow number of both microorganism strains and antibiotics. Previously, we demonstrated the possibility of using Raman spectroscopy (RS) technology for quantitative determination of the product of bacterial cell activity in the MTT assay, formazan, directly in the cell suspension. The absence of the formazan isolation step simplifies the assay and increases its accuracy. The analysis time did not exceed 2 h while maintaining the versatility of the MTT assay itself. Limitations of the developed protocol for RS detection of the MTT assay results include a high sensitivity threshold of 10^(7) CFU/mL for the bacterial cell concentration, so a preliminary stage of cultivation is necessary for samples with a low bacterial content. Here, we propose a method to increase the sensitivity of formazan determination by utilizing the effect of surface-enhanced Raman scattering (SERS) on gold nanoparticles. As a result of this study, the optimal conditions for SERS analysis of formazan in both solution and suspension of Escherichia coli cells are selected. Formazan signal amplification due to the use of SERS on gold nanoparticles instead of RS allowed us to reduce the sensitivity threshold for the number of bacterial cells in the sample by at least 30 times, up to 3 x 10^(5) CFU/mL. This sensitivity is not the limit of the SERS technology capabilities because the introduction of other types of nanoparticles (more optimal in shape, size, concentration, etc.) into the experiment will allow one to achieve even higher signal amplification.</p>\",\"PeriodicalId\":39818,\"journal\":{\"name\":\"Molekulyarnaya Biologiya\",\"volume\":\"58 6\",\"pages\":\"1031-1040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molekulyarnaya Biologiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/S0026898424060134, EDN: IAFGAM\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898424060134, EDN: IAFGAM","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目前,经验治疗方案经常用于治疗传染病,而不是基于病原体耐药性的数据。抗菌药物处方不合理的主要原因之一是缺乏快速且同时通用的病原体耐药性测定方法。最广泛使用的培养技术,如微量稀释法,需要很长时间才能产生必要数量的细菌细胞。耗时较短的耐药性评估方法(基因组学或蛋白质组学)基于特定标记物(抗性基因、某些蛋白质的过表达等)的确定;在这种情况下,特定方案通常适用于少数微生物菌株和抗生素。之前,我们证明了使用拉曼光谱(RS)技术在MTT试验中定量测定细菌细胞活性产物的可能性,formazan,直接在细胞悬浮液中。由于没有福马甲酸分离步骤,简化了分析,提高了准确性。分析时间不超过2小时,同时保持MTT分析本身的通用性。所开发的MTT测定结果RS检测方案的局限性包括细菌细胞浓度的高灵敏度阈值为10^(7)CFU/mL,因此对细菌含量低的样品需要进行初步培养。在这里,我们提出了一种利用表面增强拉曼散射(SERS)对金纳米颗粒的影响来提高甲醛测定灵敏度的方法。本研究选择了大肠杆菌细胞溶液和悬浮液中福马唑SERS分析的最佳条件。由于在金纳米颗粒上使用SERS而不是RS,因此Formazan信号放大使我们能够将样品中细菌细胞数量的灵敏度阈值降低至少30倍,最高可达3 × 10^(5) CFU/mL。这种灵敏度并不是SERS技术能力的极限,因为在实验中引入其他类型的纳米颗粒(在形状、大小、浓度等方面更优)将允许人们实现更高的信号放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Surface-Enhanced Raman Scattering to Improve the Sensitivity of the MTT Assay].

Currently, empirical therapy regimens are often used in the treatment of infectious diseases that are not based on data on pathogen resistance. One of the main reasons for the unjustified prescription of antibacterial drugs is the lack of rapid and at the same time universal methods of determining the antibiotic resistance of the pathogen. The most widely used culture techniques, such as the microdilution method, require a long time to generate the necessary number of bacterial cells. Less time-consuming methods of resistance assessment (genomic or proteomic) are based on the determination of specific markers (resistance genes, overexpression of certain proteins, etc.); in this case, the specific protocol is most often applicable to a narrow number of both microorganism strains and antibiotics. Previously, we demonstrated the possibility of using Raman spectroscopy (RS) technology for quantitative determination of the product of bacterial cell activity in the MTT assay, formazan, directly in the cell suspension. The absence of the formazan isolation step simplifies the assay and increases its accuracy. The analysis time did not exceed 2 h while maintaining the versatility of the MTT assay itself. Limitations of the developed protocol for RS detection of the MTT assay results include a high sensitivity threshold of 10^(7) CFU/mL for the bacterial cell concentration, so a preliminary stage of cultivation is necessary for samples with a low bacterial content. Here, we propose a method to increase the sensitivity of formazan determination by utilizing the effect of surface-enhanced Raman scattering (SERS) on gold nanoparticles. As a result of this study, the optimal conditions for SERS analysis of formazan in both solution and suspension of Escherichia coli cells are selected. Formazan signal amplification due to the use of SERS on gold nanoparticles instead of RS allowed us to reduce the sensitivity threshold for the number of bacterial cells in the sample by at least 30 times, up to 3 x 10^(5) CFU/mL. This sensitivity is not the limit of the SERS technology capabilities because the introduction of other types of nanoparticles (more optimal in shape, size, concentration, etc.) into the experiment will allow one to achieve even higher signal amplification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信