P2X7变构拮抗剂活性对映体的表征和立体定向分子间模式的定位。

IF 4.9 Q1 CHEMISTRY, MEDICINAL
ACS Pharmacology and Translational Science Pub Date : 2025-01-22 eCollection Date: 2025-02-14 DOI:10.1021/acsptsci.4c00582
Andrew McGown, Nicolas Renault, Amélie Barczyk, Jordan Nafie, Luciano Barluzzi, Daniel Guest, Graham J Tizzard, Simon J Coles, David Leach, Daniel von Emloh, Léa Sutton, Kiera Bailey, Lewis Edmunds, Barnaby W Greenland, Régis Millet, John Spencer, Xavier Dezitter
{"title":"P2X7变构拮抗剂活性对映体的表征和立体定向分子间模式的定位。","authors":"Andrew McGown, Nicolas Renault, Amélie Barczyk, Jordan Nafie, Luciano Barluzzi, Daniel Guest, Graham J Tizzard, Simon J Coles, David Leach, Daniel von Emloh, Léa Sutton, Kiera Bailey, Lewis Edmunds, Barnaby W Greenland, Régis Millet, John Spencer, Xavier Dezitter","doi":"10.1021/acsptsci.4c00582","DOIUrl":null,"url":null,"abstract":"<p><p>The P2X purinergic receptor 7 (P2X7) has an essential role in inflammation, innate immunity, tumor progression, neurodegenerative diseases, and several other diseases, leading subsequently to the development of P2X7 modulators. AZ11645373 is a frequently studied P2X7 antagonist tool compound but always used as a racemic mixture. Racemic AZ11645373 can be separated into its respective enantiomers by chiral chromatography, albeit in small batches, and these were stereochemically intact over two years later, by chiral high-performance liquid chromatography (HPLC) analysis. On a higher scale, significant decomposition is observed during purification. One of the enantiomers was crystallized as a palladium complex, and its (<i>R</i>)-configuration was determined by single-crystal X-ray diffraction, further confirmed, in solution, by vibrational circular dichroism. Biological studies demonstrated that both (<i>S</i>)- and (<i>R</i>)-forms were able to fully inhibit human P2X7, but (<i>R</i>)-AZ11645373 was more potent, with an IC<sub>50</sub> of 32.9 nM. Contrary to its effect on human P2X7, (<i>S</i>)-AZ11645373 was ineffective on mouse P2X7, while the (<i>R</i>)-AZ11645373 enantiomer was a full antagonist. These results demonstrated that the antagonistic effects of racemic AZ11645373 are mainly due to its (<i>R</i>)-enantiomer. Site-directed mutagenesis and molecular dynamics simulations indicated that the (<i>R</i>)-enantiomer may form specific interactions with Phe95 and the antagonists bound to other P2X7 monomers. Phe95 is situated in the allosteric binding site at the edge of the upper vestibule and appears to be the pivotal molecular gateway between AZ11645373 allosteric binding and locking of the closed state of the P2X7 channel. All together, these structure-function relationships should be helpful for drug design of P2X7 modulators.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 2","pages":"446-459"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Active Enantiomer and Mapping of the Stereospecific Intermolecular Pattern of a Reference P2X7 Allosteric Antagonist.\",\"authors\":\"Andrew McGown, Nicolas Renault, Amélie Barczyk, Jordan Nafie, Luciano Barluzzi, Daniel Guest, Graham J Tizzard, Simon J Coles, David Leach, Daniel von Emloh, Léa Sutton, Kiera Bailey, Lewis Edmunds, Barnaby W Greenland, Régis Millet, John Spencer, Xavier Dezitter\",\"doi\":\"10.1021/acsptsci.4c00582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The P2X purinergic receptor 7 (P2X7) has an essential role in inflammation, innate immunity, tumor progression, neurodegenerative diseases, and several other diseases, leading subsequently to the development of P2X7 modulators. AZ11645373 is a frequently studied P2X7 antagonist tool compound but always used as a racemic mixture. Racemic AZ11645373 can be separated into its respective enantiomers by chiral chromatography, albeit in small batches, and these were stereochemically intact over two years later, by chiral high-performance liquid chromatography (HPLC) analysis. On a higher scale, significant decomposition is observed during purification. One of the enantiomers was crystallized as a palladium complex, and its (<i>R</i>)-configuration was determined by single-crystal X-ray diffraction, further confirmed, in solution, by vibrational circular dichroism. Biological studies demonstrated that both (<i>S</i>)- and (<i>R</i>)-forms were able to fully inhibit human P2X7, but (<i>R</i>)-AZ11645373 was more potent, with an IC<sub>50</sub> of 32.9 nM. Contrary to its effect on human P2X7, (<i>S</i>)-AZ11645373 was ineffective on mouse P2X7, while the (<i>R</i>)-AZ11645373 enantiomer was a full antagonist. These results demonstrated that the antagonistic effects of racemic AZ11645373 are mainly due to its (<i>R</i>)-enantiomer. Site-directed mutagenesis and molecular dynamics simulations indicated that the (<i>R</i>)-enantiomer may form specific interactions with Phe95 and the antagonists bound to other P2X7 monomers. Phe95 is situated in the allosteric binding site at the edge of the upper vestibule and appears to be the pivotal molecular gateway between AZ11645373 allosteric binding and locking of the closed state of the P2X7 channel. All together, these structure-function relationships should be helpful for drug design of P2X7 modulators.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 2\",\"pages\":\"446-459\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

P2X嘌呤能受体7 (P2X7)在炎症、先天免疫、肿瘤进展、神经退行性疾病和其他几种疾病中发挥重要作用,随后导致P2X7调节剂的发展。AZ11645373是一种经常被研究的P2X7拮抗剂工具化合物,但通常作为外消旋混合物使用。外消旋AZ11645373可以通过手性色谱分离成各自的对映体,尽管是小批量的,并且这些对映体在两年后通过手性高效液相色谱(HPLC)分析是立体完整的。在更高的尺度上,在净化过程中观察到明显的分解。其中一个对映体结晶为钯配合物,其(R)构型通过单晶x射线衍射确定,并在溶液中通过振动圆二色性进一步证实。生物学研究表明,(S)-和(R)-两种形式都能完全抑制人P2X7,但(R)- az11645373更有效,IC50为32.9 nM。与对人P2X7的作用相反,(S)-AZ11645373对小鼠P2X7无效,而(R)-AZ11645373对映体是完全拮抗剂。这些结果表明,外消旋AZ11645373的拮抗作用主要来自于它的(R)-对映体。定点诱变和分子动力学模拟表明(R)-对映体可能与Phe95和结合其他P2X7单体的拮抗剂形成特异性相互作用。Phe95位于上前庭边缘的变抗结合位点,似乎是AZ11645373变抗结合和锁定P2X7通道关闭状态之间的关键分子门户。综上所述,这些结构-功能关系将有助于P2X7调节剂的药物设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the Active Enantiomer and Mapping of the Stereospecific Intermolecular Pattern of a Reference P2X7 Allosteric Antagonist.

The P2X purinergic receptor 7 (P2X7) has an essential role in inflammation, innate immunity, tumor progression, neurodegenerative diseases, and several other diseases, leading subsequently to the development of P2X7 modulators. AZ11645373 is a frequently studied P2X7 antagonist tool compound but always used as a racemic mixture. Racemic AZ11645373 can be separated into its respective enantiomers by chiral chromatography, albeit in small batches, and these were stereochemically intact over two years later, by chiral high-performance liquid chromatography (HPLC) analysis. On a higher scale, significant decomposition is observed during purification. One of the enantiomers was crystallized as a palladium complex, and its (R)-configuration was determined by single-crystal X-ray diffraction, further confirmed, in solution, by vibrational circular dichroism. Biological studies demonstrated that both (S)- and (R)-forms were able to fully inhibit human P2X7, but (R)-AZ11645373 was more potent, with an IC50 of 32.9 nM. Contrary to its effect on human P2X7, (S)-AZ11645373 was ineffective on mouse P2X7, while the (R)-AZ11645373 enantiomer was a full antagonist. These results demonstrated that the antagonistic effects of racemic AZ11645373 are mainly due to its (R)-enantiomer. Site-directed mutagenesis and molecular dynamics simulations indicated that the (R)-enantiomer may form specific interactions with Phe95 and the antagonists bound to other P2X7 monomers. Phe95 is situated in the allosteric binding site at the edge of the upper vestibule and appears to be the pivotal molecular gateway between AZ11645373 allosteric binding and locking of the closed state of the P2X7 channel. All together, these structure-function relationships should be helpful for drug design of P2X7 modulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信