动态全身PET图像分析的无监督聚类算法的定量评价。

Q3 Engineering
Oona Rainio, Maria K Jaakkola, Riku Klén
{"title":"动态全身PET图像分析的无监督聚类算法的定量评价。","authors":"Oona Rainio, Maria K Jaakkola, Riku Klén","doi":"10.1080/03091902.2025.2466834","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, dynamic total-body positron emission tomography (PET) imaging has become possible due to new scanner devices. However, there is still little research systematically evaluating clustering algorithms for processing of dynamic total-body PET images.</p><p><strong>Materials and methods: </strong>Here, we compare the performance of 15 unsupervised clustering methods, including K-means either by itself or after principal component analysis (PCA) or independent component analysis (ICA), Gaussian mixture model (GMM), fuzzy c-means (FCM), agglomerative clustering, spectral clustering, and several newer clustering algorithms, for classifying time activity curves (TACs) in dynamic PET images. We use dynamic total-body <sup>15</sup>O-water PET images of 30 patients. To evaluate the clustering algorithms in a quantitative way, we use them to classify 5000 TACs from each image based on whether the curve is taken from brain, right heart ventricle, right kidney, lower right lung lobe, or urinary bladder.</p><p><strong>Results: </strong>According to our results, the best methods are GMM, FCM, and ICA combined with mini batch K-means, which classified the TACs with a median accuracies of 89%, 83%, and 81%, respectively, in a processing time of half a second or less.</p><p><strong>Conclusion: </strong>GMM, FCM, and ICA with mini batch K-means show promise for dynamic total-body PET analysis.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"37-44"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative evaluation of unsupervised clustering algorithms for dynamic total-body PET image analysis.\",\"authors\":\"Oona Rainio, Maria K Jaakkola, Riku Klén\",\"doi\":\"10.1080/03091902.2025.2466834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recently, dynamic total-body positron emission tomography (PET) imaging has become possible due to new scanner devices. However, there is still little research systematically evaluating clustering algorithms for processing of dynamic total-body PET images.</p><p><strong>Materials and methods: </strong>Here, we compare the performance of 15 unsupervised clustering methods, including K-means either by itself or after principal component analysis (PCA) or independent component analysis (ICA), Gaussian mixture model (GMM), fuzzy c-means (FCM), agglomerative clustering, spectral clustering, and several newer clustering algorithms, for classifying time activity curves (TACs) in dynamic PET images. We use dynamic total-body <sup>15</sup>O-water PET images of 30 patients. To evaluate the clustering algorithms in a quantitative way, we use them to classify 5000 TACs from each image based on whether the curve is taken from brain, right heart ventricle, right kidney, lower right lung lobe, or urinary bladder.</p><p><strong>Results: </strong>According to our results, the best methods are GMM, FCM, and ICA combined with mini batch K-means, which classified the TACs with a median accuracies of 89%, 83%, and 81%, respectively, in a processing time of half a second or less.</p><p><strong>Conclusion: </strong>GMM, FCM, and ICA with mini batch K-means show promise for dynamic total-body PET analysis.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":\" \",\"pages\":\"37-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2025.2466834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2466834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

背景:近年来,由于新型扫描设备的出现,动态全身正电子发射断层扫描(PET)成像成为可能。然而,系统评价聚类算法处理动态全身PET图像的研究还很少。材料和方法:在这里,我们比较了15种无监督聚类方法的性能,包括K-means本身或经过主成分分析(PCA)或独立成分分析(ICA),高斯混合模型(GMM),模糊c-means (FCM),聚集聚类,光谱聚类和几种新的聚类算法,用于动态PET图像的时间活动曲线(tac)分类。我们使用30例患者的动态全身15o -水PET图像。为了定量地评估聚类算法,我们使用它们根据曲线是否取自大脑、右心室、右肾脏、右下肺叶或膀胱,对每张图像中的5000个tac进行分类。结果:GMM、FCM和ICA结合小批量K-means对tac进行分类的中位准确率分别为89%、83%和81%,处理时间不超过半秒。结论:GMM、FCM和ICA具有小批量K-means,有望用于动态全身PET分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative evaluation of unsupervised clustering algorithms for dynamic total-body PET image analysis.

Background: Recently, dynamic total-body positron emission tomography (PET) imaging has become possible due to new scanner devices. However, there is still little research systematically evaluating clustering algorithms for processing of dynamic total-body PET images.

Materials and methods: Here, we compare the performance of 15 unsupervised clustering methods, including K-means either by itself or after principal component analysis (PCA) or independent component analysis (ICA), Gaussian mixture model (GMM), fuzzy c-means (FCM), agglomerative clustering, spectral clustering, and several newer clustering algorithms, for classifying time activity curves (TACs) in dynamic PET images. We use dynamic total-body 15O-water PET images of 30 patients. To evaluate the clustering algorithms in a quantitative way, we use them to classify 5000 TACs from each image based on whether the curve is taken from brain, right heart ventricle, right kidney, lower right lung lobe, or urinary bladder.

Results: According to our results, the best methods are GMM, FCM, and ICA combined with mini batch K-means, which classified the TACs with a median accuracies of 89%, 83%, and 81%, respectively, in a processing time of half a second or less.

Conclusion: GMM, FCM, and ICA with mini batch K-means show promise for dynamic total-body PET analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信