通过计算对接、药效团建模和机器学习发现新的HER2抑制剂。

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Aseel Yasin Matrouk, Haneen Mohammad, Safa Daoud, Mutasem Omar Taha
{"title":"通过计算对接、药效团建模和机器学习发现新的HER2抑制剂。","authors":"Aseel Yasin Matrouk, Haneen Mohammad, Safa Daoud, Mutasem Omar Taha","doi":"10.1002/minf.202400336","DOIUrl":null,"url":null,"abstract":"<p><p>The human epidermal growth factor receptor 2 (HER2) is a critical oncogene implicated in the development of various aggressive cancers, particularly breast cancer. Discovering novel HER2 inhibitors is crucial for expanding therapeutic options for HER2-related malignancies. In this study, we present a computational workflow that focuses on generating pharmacophores derived from docked poses of a selected list of 15 diverse, potent HER2 inhibitors, utilizing flexible docking. The resulting pharmacophores, along with other physicochemical molecular descriptors, were then evaluated in a machine learning-quantitative structure-activity relationship (ML-QSAR) analysis against 1,272 HER2 inhibitors. Several machine learning methods were assessed, and a genetic function algorithm (GFA) was employed for feature selection. Ultimately, GFA combined with Bagging and J48Graft classifiers produced the best self-consistent and predictive models. These models highlighted the significance of two pharmacophores, Hypo_1 and Hypo_2, in distinguishing potent from less active inhibitors. The successful ML-QSAR models and their associated pharmacophores were used to screen the National Cancer Institute (NCI) database for novel HER2 inhibitors. Three promising anti-HER2 leads were identified, with the top-performing lead demonstrating an experimental anti-HER2 IC<sub>50</sub> value of 3.85 μM. Notably, the three inhibitors exhibited distinct chemical scaffolds compared to existing HER2 inhibitors, as indicated by principal component analysis.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 2","pages":"e202400336"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of New HER2 Inhibitors via Computational Docking, Pharmacophore Modeling, and Machine Learning.\",\"authors\":\"Aseel Yasin Matrouk, Haneen Mohammad, Safa Daoud, Mutasem Omar Taha\",\"doi\":\"10.1002/minf.202400336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human epidermal growth factor receptor 2 (HER2) is a critical oncogene implicated in the development of various aggressive cancers, particularly breast cancer. Discovering novel HER2 inhibitors is crucial for expanding therapeutic options for HER2-related malignancies. In this study, we present a computational workflow that focuses on generating pharmacophores derived from docked poses of a selected list of 15 diverse, potent HER2 inhibitors, utilizing flexible docking. The resulting pharmacophores, along with other physicochemical molecular descriptors, were then evaluated in a machine learning-quantitative structure-activity relationship (ML-QSAR) analysis against 1,272 HER2 inhibitors. Several machine learning methods were assessed, and a genetic function algorithm (GFA) was employed for feature selection. Ultimately, GFA combined with Bagging and J48Graft classifiers produced the best self-consistent and predictive models. These models highlighted the significance of two pharmacophores, Hypo_1 and Hypo_2, in distinguishing potent from less active inhibitors. The successful ML-QSAR models and their associated pharmacophores were used to screen the National Cancer Institute (NCI) database for novel HER2 inhibitors. Three promising anti-HER2 leads were identified, with the top-performing lead demonstrating an experimental anti-HER2 IC<sub>50</sub> value of 3.85 μM. Notably, the three inhibitors exhibited distinct chemical scaffolds compared to existing HER2 inhibitors, as indicated by principal component analysis.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\"44 2\",\"pages\":\"e202400336\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202400336\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

人表皮生长因子受体2 (HER2)是一个重要的致癌基因,与各种侵袭性癌症,特别是乳腺癌的发展有关。发现新的HER2抑制剂对于扩大HER2相关恶性肿瘤的治疗选择至关重要。在这项研究中,我们提出了一个计算工作流程,重点是利用灵活对接,从15种不同的、有效的HER2抑制剂的选定列表的对接姿势中产生药效团。然后,在针对1,272种HER2抑制剂的机器学习-定量结构-活性关系(ML-QSAR)分析中,对所得的药效团以及其他物理化学分子描述符进行评估。评估了几种机器学习方法,并采用遗传函数算法(GFA)进行特征选择。最终,GFA结合Bagging和J48Graft分类器产生了最好的自一致性和预测模型。这些模型突出了两个药效团Hypo_1和Hypo_2在区分强效抑制剂和低活性抑制剂方面的意义。成功的ML-QSAR模型及其相关的药效团用于筛选美国国家癌症研究所(NCI)数据库中的新型HER2抑制剂。3个抗her2引脚被鉴定出来,其中表现最好的引脚的抗her2 IC50值为3.85 μM。值得注意的是,主成分分析表明,与现有的HER2抑制剂相比,这三种抑制剂表现出不同的化学支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of New HER2 Inhibitors via Computational Docking, Pharmacophore Modeling, and Machine Learning.

The human epidermal growth factor receptor 2 (HER2) is a critical oncogene implicated in the development of various aggressive cancers, particularly breast cancer. Discovering novel HER2 inhibitors is crucial for expanding therapeutic options for HER2-related malignancies. In this study, we present a computational workflow that focuses on generating pharmacophores derived from docked poses of a selected list of 15 diverse, potent HER2 inhibitors, utilizing flexible docking. The resulting pharmacophores, along with other physicochemical molecular descriptors, were then evaluated in a machine learning-quantitative structure-activity relationship (ML-QSAR) analysis against 1,272 HER2 inhibitors. Several machine learning methods were assessed, and a genetic function algorithm (GFA) was employed for feature selection. Ultimately, GFA combined with Bagging and J48Graft classifiers produced the best self-consistent and predictive models. These models highlighted the significance of two pharmacophores, Hypo_1 and Hypo_2, in distinguishing potent from less active inhibitors. The successful ML-QSAR models and their associated pharmacophores were used to screen the National Cancer Institute (NCI) database for novel HER2 inhibitors. Three promising anti-HER2 leads were identified, with the top-performing lead demonstrating an experimental anti-HER2 IC50 value of 3.85 μM. Notably, the three inhibitors exhibited distinct chemical scaffolds compared to existing HER2 inhibitors, as indicated by principal component analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信