Louise Bondeelle, Sophie Clément, Anne Bergeron, Caroline Tapparel
{"title":"肺干细胞与呼吸道上皮细胞在移植中的嵌合。","authors":"Louise Bondeelle, Sophie Clément, Anne Bergeron, Caroline Tapparel","doi":"10.1183/16000617.0146-2024","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells are capable of self-renewal and differentiation into specialised types. They range from totipotent cells to multipotent or somatic stem cells and ultimately to unipotent cells. Some adult multipotent stem cells can have the potential to regenerate and colonise diverse tissues. The respiratory airways and lung mucosa, exposed to ambient air, perform vital roles for all human tissues and organs. They serve as barriers against airborne threats and are essential for tissue oxygenation. Despite low steady-state turnover, lungs are vulnerable to injuries and diseases from environmental exposure. Lung stem cells are crucial due to their regenerative potential and ability to replace damaged cells. Lung repair with extrapulmonary stem cells can occur, leading to the coexistence of respiratory cells with different genetic origins, a phenomenon known as airway epithelial chimerism. The impact of such chimerism in lung repair and disease is actively studied. This review explores different stem cell types, focusing on pulmonary stem cells. It discusses airway epithelium models derived from stem cells for studying lung diseases and examines lung chimerism, particularly in lung transplantation and haematopoietic stem cell transplantation, highlighting its significance in understanding tissue repair and chimerism-mediated repair processes in lung pathology.</p>","PeriodicalId":12166,"journal":{"name":"European Respiratory Review","volume":"34 175","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lung stem cells and respiratory epithelial chimerism in transplantation.\",\"authors\":\"Louise Bondeelle, Sophie Clément, Anne Bergeron, Caroline Tapparel\",\"doi\":\"10.1183/16000617.0146-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cells are capable of self-renewal and differentiation into specialised types. They range from totipotent cells to multipotent or somatic stem cells and ultimately to unipotent cells. Some adult multipotent stem cells can have the potential to regenerate and colonise diverse tissues. The respiratory airways and lung mucosa, exposed to ambient air, perform vital roles for all human tissues and organs. They serve as barriers against airborne threats and are essential for tissue oxygenation. Despite low steady-state turnover, lungs are vulnerable to injuries and diseases from environmental exposure. Lung stem cells are crucial due to their regenerative potential and ability to replace damaged cells. Lung repair with extrapulmonary stem cells can occur, leading to the coexistence of respiratory cells with different genetic origins, a phenomenon known as airway epithelial chimerism. The impact of such chimerism in lung repair and disease is actively studied. This review explores different stem cell types, focusing on pulmonary stem cells. It discusses airway epithelium models derived from stem cells for studying lung diseases and examines lung chimerism, particularly in lung transplantation and haematopoietic stem cell transplantation, highlighting its significance in understanding tissue repair and chimerism-mediated repair processes in lung pathology.</p>\",\"PeriodicalId\":12166,\"journal\":{\"name\":\"European Respiratory Review\",\"volume\":\"34 175\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Respiratory Review\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1183/16000617.0146-2024\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Respiratory Review","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1183/16000617.0146-2024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Lung stem cells and respiratory epithelial chimerism in transplantation.
Stem cells are capable of self-renewal and differentiation into specialised types. They range from totipotent cells to multipotent or somatic stem cells and ultimately to unipotent cells. Some adult multipotent stem cells can have the potential to regenerate and colonise diverse tissues. The respiratory airways and lung mucosa, exposed to ambient air, perform vital roles for all human tissues and organs. They serve as barriers against airborne threats and are essential for tissue oxygenation. Despite low steady-state turnover, lungs are vulnerable to injuries and diseases from environmental exposure. Lung stem cells are crucial due to their regenerative potential and ability to replace damaged cells. Lung repair with extrapulmonary stem cells can occur, leading to the coexistence of respiratory cells with different genetic origins, a phenomenon known as airway epithelial chimerism. The impact of such chimerism in lung repair and disease is actively studied. This review explores different stem cell types, focusing on pulmonary stem cells. It discusses airway epithelium models derived from stem cells for studying lung diseases and examines lung chimerism, particularly in lung transplantation and haematopoietic stem cell transplantation, highlighting its significance in understanding tissue repair and chimerism-mediated repair processes in lung pathology.
期刊介绍:
The European Respiratory Review (ERR) is an open-access journal published by the European Respiratory Society (ERS), serving as a vital resource for respiratory professionals by delivering updates on medicine, science, and surgery in the field. ERR features state-of-the-art review articles, editorials, correspondence, and summaries of recent research findings and studies covering a wide range of topics including COPD, asthma, pulmonary hypertension, interstitial lung disease, lung cancer, tuberculosis, and pulmonary infections. Articles are published continuously and compiled into quarterly issues within a single annual volume.