DNA甲基化时钟揭示的特发性肺纤维化的表观遗传年龄加速。

IF 3.5 2区 医学 Q1 PHYSIOLOGY
Daniel B Kurbanov, Farida Ahangari, Taylor Adams, Ruben De Man, Jessica Tang, Marianne Carlon, Nebal Abu Hussein, Emmanuela Cortesi, Marta Zapata, Laurens De Sadelaar, Wim Wuyts, Bart Vanaudenaerde, Naftali Kaminski, John E McDonough
{"title":"DNA甲基化时钟揭示的特发性肺纤维化的表观遗传年龄加速。","authors":"Daniel B Kurbanov, Farida Ahangari, Taylor Adams, Ruben De Man, Jessica Tang, Marianne Carlon, Nebal Abu Hussein, Emmanuela Cortesi, Marta Zapata, Laurens De Sadelaar, Wim Wuyts, Bart Vanaudenaerde, Naftali Kaminski, John E McDonough","doi":"10.1152/ajplung.00171.2024","DOIUrl":null,"url":null,"abstract":"<p><p>In this research, we delve into the association between epigenetic aging and idiopathic pulmonary fibrosis (IPF), a debilitating lung disease that progresses over time. Utilizing the Illumina MethylationEPIC array, we assessed DNA methylation levels in donated human lung tissue from patients with IPF, categorizing the disease into mild, moderate, and severe stages based on clinical assessments. We used seven epigenetic clocks to determine age acceleration, which is the discrepancy between biological (epigenetic) and chronological age. Our findings revealed a notable acceleration of biological aging in IPF tissues compared with healthy controls, with four clocks-Horvath's, Hannum's, PhenoAge, and DunedinPACE-showing significant correlations. DunedinPACE, in particular, indicated a more rapid aging process in the more severe regions within the lungs of IPF cases. These results suggest that the biological aging process in IPF is expedited and closely tied to the severity of the disease. The study underscores the potential of DNA methylation as a biomarker for IPF, providing valuable insights into the underlying methylation patterns and the dynamics of epigenetic aging in affected lung tissue. This research supports the broader application of epigenetic clocks in clinical prognosis and highlights the critical role of biological age in the context of medical research and healthcare.<b>NEW & NOTEWORTHY</b> Using epigenetic clocks, we found a notable acceleration of biological aging in IPF tissues, particularly in DunedinPACE, suggesting that the biological aging process in IPF is accelerated and closely related to the severity of the disease. The study also underscores DNA methylation's potential as a biomarker for IPF, as well as the dynamics of epigenetic aging and the need to consider biological age in medical research and healthcare.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L456-L462"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169420/pdf/","citationCount":"0","resultStr":"{\"title\":\"Epigenetic age acceleration in idiopathic pulmonary fibrosis revealed by DNA methylation clocks.\",\"authors\":\"Daniel B Kurbanov, Farida Ahangari, Taylor Adams, Ruben De Man, Jessica Tang, Marianne Carlon, Nebal Abu Hussein, Emmanuela Cortesi, Marta Zapata, Laurens De Sadelaar, Wim Wuyts, Bart Vanaudenaerde, Naftali Kaminski, John E McDonough\",\"doi\":\"10.1152/ajplung.00171.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this research, we delve into the association between epigenetic aging and idiopathic pulmonary fibrosis (IPF), a debilitating lung disease that progresses over time. Utilizing the Illumina MethylationEPIC array, we assessed DNA methylation levels in donated human lung tissue from patients with IPF, categorizing the disease into mild, moderate, and severe stages based on clinical assessments. We used seven epigenetic clocks to determine age acceleration, which is the discrepancy between biological (epigenetic) and chronological age. Our findings revealed a notable acceleration of biological aging in IPF tissues compared with healthy controls, with four clocks-Horvath's, Hannum's, PhenoAge, and DunedinPACE-showing significant correlations. DunedinPACE, in particular, indicated a more rapid aging process in the more severe regions within the lungs of IPF cases. These results suggest that the biological aging process in IPF is expedited and closely tied to the severity of the disease. The study underscores the potential of DNA methylation as a biomarker for IPF, providing valuable insights into the underlying methylation patterns and the dynamics of epigenetic aging in affected lung tissue. This research supports the broader application of epigenetic clocks in clinical prognosis and highlights the critical role of biological age in the context of medical research and healthcare.<b>NEW & NOTEWORTHY</b> Using epigenetic clocks, we found a notable acceleration of biological aging in IPF tissues, particularly in DunedinPACE, suggesting that the biological aging process in IPF is accelerated and closely related to the severity of the disease. The study also underscores DNA methylation's potential as a biomarker for IPF, as well as the dynamics of epigenetic aging and the need to consider biological age in medical research and healthcare.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L456-L462\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169420/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00171.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00171.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们深入研究了表观遗传衰老与特发性肺纤维化(IPF)之间的关系,IPF是一种随时间进展的使人衰弱的肺部疾病。利用Illumina MethylationEPIC阵列,我们评估了来自IPF患者捐献的人肺组织中的DNA甲基化水平,并根据临床评估将该疾病分为轻度、中度和重度。我们使用了7个表观遗传时钟来确定年龄加速,这是生物(表观遗传)年龄和实足年龄之间的差异。我们的研究结果显示,与健康对照组相比,IPF组织的生物衰老明显加速,其中四个时钟- horvath, Hannum, PhenoAge和dunedinpace -显示出显著的相关性。DunedinPACE特别指出,IPF病例肺内更严重区域的衰老过程更快。这些结果表明,IPF的生物老化过程是加速的,并与疾病的严重程度密切相关。该研究强调了DNA甲基化作为IPF生物标志物的潜力,为受影响肺组织中潜在的甲基化模式和表观遗传衰老动力学提供了有价值的见解。本研究支持表观遗传时钟在临床预后中的广泛应用,并强调了生物年龄在医学研究和医疗保健中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigenetic age acceleration in idiopathic pulmonary fibrosis revealed by DNA methylation clocks.

In this research, we delve into the association between epigenetic aging and idiopathic pulmonary fibrosis (IPF), a debilitating lung disease that progresses over time. Utilizing the Illumina MethylationEPIC array, we assessed DNA methylation levels in donated human lung tissue from patients with IPF, categorizing the disease into mild, moderate, and severe stages based on clinical assessments. We used seven epigenetic clocks to determine age acceleration, which is the discrepancy between biological (epigenetic) and chronological age. Our findings revealed a notable acceleration of biological aging in IPF tissues compared with healthy controls, with four clocks-Horvath's, Hannum's, PhenoAge, and DunedinPACE-showing significant correlations. DunedinPACE, in particular, indicated a more rapid aging process in the more severe regions within the lungs of IPF cases. These results suggest that the biological aging process in IPF is expedited and closely tied to the severity of the disease. The study underscores the potential of DNA methylation as a biomarker for IPF, providing valuable insights into the underlying methylation patterns and the dynamics of epigenetic aging in affected lung tissue. This research supports the broader application of epigenetic clocks in clinical prognosis and highlights the critical role of biological age in the context of medical research and healthcare.NEW & NOTEWORTHY Using epigenetic clocks, we found a notable acceleration of biological aging in IPF tissues, particularly in DunedinPACE, suggesting that the biological aging process in IPF is accelerated and closely related to the severity of the disease. The study also underscores DNA methylation's potential as a biomarker for IPF, as well as the dynamics of epigenetic aging and the need to consider biological age in medical research and healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信